Suppr超能文献

光程长度的导数:从数学公式到应用

Derivatives of optical path length: from mathematical formulation to applications.

作者信息

Lin Psang Dain

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2015 May 1;32(5):710-7. doi: 10.1364/JOSAA.32.000710.

Abstract

The optical path length (OPL) of an optical system is a highly important parameter since it determines the phase of the light passing through the system and governs the interference and diffraction of the rays as they propagate. The Jacobian and Hessian matrices of the OPL are of fundamental importance in tuning the performance of a system. However, the OPL varies as a recursive function of the incoming ray and the boundary variable vector, and hence computing the Jacobian and Hessian matrices is extremely challenging. In an earlier study by the present group, this problem was addressed by deriving the Jacobian matrix of the OPL with respect to all of the independent system variables of a nonaxially symmetric system. In the present study, the proposed method is extended to the Hessian matrix of a nonaxially symmetric optical system. The proposed method facilitates the cross-sensitivity analysis of the OPL with respect to arbitrary system variables and provides an ideal basis for automatic optical system design applications in which the merit function is defined in terms of wavefront aberrations. An illustrative example is given. It is shown that the proposed method requires fewer iterations than that based on the Jacobian matrix and yields a more reliable and precise optimization performance.

摘要

光学系统的光程长度(OPL)是一个非常重要的参数,因为它决定了通过该系统的光的相位,并在光线传播时控制光线的干涉和衍射。OPL的雅可比矩阵和海森矩阵对于调整系统性能至关重要。然而,OPL作为入射光线和边界变量向量的递归函数而变化,因此计算雅可比矩阵和海森矩阵极具挑战性。在本团队早期的一项研究中,通过推导非轴对称系统的OPL相对于所有独立系统变量的雅可比矩阵来解决这个问题。在本研究中,所提出的方法扩展到了非轴对称光学系统的海森矩阵。所提出的方法便于对OPL相对于任意系统变量进行交叉灵敏度分析,并为以波前像差定义优值函数的自动光学系统设计应用提供了理想基础。给出了一个示例。结果表明,所提出的方法比基于雅可比矩阵的方法所需的迭代次数更少,并且产生更可靠、精确的优化性能。

相似文献

1
Derivatives of optical path length: from mathematical formulation to applications.
J Opt Soc Am A Opt Image Sci Vis. 2015 May 1;32(5):710-7. doi: 10.1364/JOSAA.32.000710.
3
Jacobian and Hessian matrices of optical path length for computing the wavefront shape, irradiance, and caustics in optical systems.
J Opt Soc Am A Opt Image Sci Vis. 2012 Nov 1;29(11):2272-80. doi: 10.1364/JOSAA.29.002272.
10
Simple and practical approach for computing the ray Hessian matrix in geometrical optics.
J Opt Soc Am A Opt Image Sci Vis. 2018 Feb 1;35(2):210-220. doi: 10.1364/JOSAA.35.000210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验