Jayasundara Nishad, Kozal Jordan S, Arnold Mariah C, Chan Sherine S L, Di Giulio Richard T
Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America.
Medical University of South Carolina, Charleston, South Carolina, United States of America.
PLoS One. 2015 Sep 14;10(9):e0137710. doi: 10.1371/journal.pone.0137710. eCollection 2015.
Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the current study, metabolic scaling relationships of hearts and brains with body size were examined by improving on a high-throughput whole-organ oxygen consumption rate (OCR) analysis method in five biomedically and environmentally relevant teleost model species. Tissue-specific metabolic scaling was compared with organismal routine metabolism (RMO2), which was measured using whole organismal respirometry. Basal heart OCR and organismal RMO2 scaled identically with body mass in a species-specific fashion across all five species tested. However, organismal maximum metabolic rates (MMO2) and pharmacologically-induced maximum cardiac metabolic rates in zebrafish Danio rerio did not show a similar relationship with body mass. Brain metabolic rates did not scale with body size. The identical allometric scaling of heart and organismal metabolic rates with body size suggests that hearts, the power generator of an organism's vascular distribution network, might be crucial in determining teleost metabolic rate scaling under routine conditions. Furthermore, these findings indicate the possibility of measuring heart OCR utilizing the high-throughput approach presented here as a proxy for organismal metabolic rate-a useful metric in characterizing organismal fitness. In addition to heart and brain OCR, the current approach was also used to measure whole liver OCR, partition cardiac mitochondrial bioenergetic parameters using pharmacological agents, and estimate heart and brain glycolytic rates. This high-throughput whole-organ bioenergetic analysis method has important applications in toxicology, evolutionary physiology, and biomedical sciences, particularly in the context of investigating pathogenesis of mitochondrial diseases.
生物体代谢率是生物学中的一个基本指标,它与体型呈现异速生长比例关系。生物系统中类似分形的血管分布网络被认为是从个体生物到细胞、线粒体和酶的代谢率异速生长比例定律的基础。该范式中明显缺乏组织特异性代谢比例关系。在当前的研究中,通过改进一种高通量全器官氧消耗率(OCR)分析方法,在五个与生物医学和环境相关的硬骨鱼模型物种中研究了心脏和大脑与体型的代谢比例关系。将组织特异性代谢比例与通过全生物体呼吸测定法测量的生物体常规代谢(RMO2)进行了比较。在所有测试的五个物种中,基础心脏OCR和生物体RMO2以物种特异性方式与体重呈相同比例缩放。然而,斑马鱼(Danio rerio)的生物体最大代谢率(MMO2)和药理学诱导的最大心脏代谢率与体重没有显示出类似的关系。大脑代谢率与体型无关。心脏和生物体代谢率与体型的相同异速生长比例表明,心脏作为生物体血管分布网络的动力源,在常规条件下可能对硬骨鱼代谢率的缩放起关键作用。此外,这些发现表明利用此处提出的高通量方法测量心脏OCR作为生物体代谢率的替代指标的可能性——这是表征生物体健康状况的一个有用指标。除了心脏和大脑OCR外,当前方法还用于测量全肝OCR,使用药物试剂划分心脏线粒体生物能量参数,并估计心脏和大脑的糖酵解率。这种高通量全器官生物能量分析方法在毒理学、进化生理学和生物医学科学中具有重要应用,特别是在研究线粒体疾病发病机制的背景下。