Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States.
Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States.
Environ Sci Technol. 2018 Jan 16;52(2):503-512. doi: 10.1021/acs.est.5b01409. Epub 2017 Dec 29.
Accurate mapping of the composition and structure of minerals and associated biological materials is critical in geomicrobiology and environmental research. Here, we have developed an apparatus that allows the correlation of cryogenic transmission electron microscopy (cryo-TEM) and synchrotron hard X-ray microprobe (SHXM) data sets to precisely determine the distribution, valence state, and structure of selenium in biofilms sampled from a contaminated aquifer near Rifle, CO. Results were replicated in the laboratory via anaerobic selenate-reducing enrichment cultures. 16S rRNA analyses of field-derived biofilm indicated the dominance of Betaproteobacteria from the Comamonadaceae family and uncultivated members of the Simplicispira genus. The major product in field and culture-derived biofilms is ∼25-300 nm red amorphous Se aggregates of colloidal nanoparticles. Correlative analyses of the cultures provided direct evidence for the microbial dissimilatory reduction of Se(VI) to Se(IV) to Se. Extended X-ray absorption fine-structure spectroscopy showed red amorphous Se with a first shell Se-Se interatomic distance of 2.339 ± 0.003 Å. Complementary scanning transmission X-ray microscopy revealed that these aggregates are strongly associated with a protein-rich biofilm matrix. These findings have important implications for predicting the stability and mobility of Se bioremediation products and understanding of Se biogeochemical cycling. The approach, involving the correlation of cryo-SHXM and cryo-TEM data sets from the same specimen area, is broadly applicable to biological and environmental samples.
准确绘制矿物和相关生物材料的成分和结构图谱,对于地质微生物学和环境研究至关重要。在这里,我们开发了一种仪器,可以将低温透射电子显微镜(cryo-TEM)和同步加速器硬 X 射线微探针(SHXM)数据集进行关联,从而精确确定从科罗拉多州 Rifle 附近受污染含水层中采集的生物膜中硒的分布、价态和结构。通过厌氧硒酸盐还原富集培养,在实验室中复制了结果。对现场生物膜的 16S rRNA 分析表明,β变形菌科的 Comamonadaceae 家族和未培养的 Simplicispira 属成员占主导地位。现场和培养衍生生物膜中的主要产物是约 25-300nm 红色无定形硒的胶体纳米颗粒聚集体。培养物的相关分析提供了微生物对硒(VI)到硒(IV)再到硒(IV)的异化还原的直接证据。扩展 X 射线吸收精细结构光谱显示,红色无定形硒的第一壳层硒-硒原子间距离为 2.339 ± 0.003Å。互补扫描透射 X 射线显微镜显示,这些聚集体与富含蛋白质的生物膜基质密切相关。这些发现对预测硒生物修复产物的稳定性和迁移性以及了解硒生物地球化学循环具有重要意义。该方法涉及对同一标本区域的 cryo-SHXM 和 cryo-TEM 数据集进行关联,广泛适用于生物和环境样品。