Suppr超能文献

通讯:利用二维电子光谱法在光合细菌体内观察到的相干性

Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy.

作者信息

Dahlberg Peter D, Norris Graham J, Wang Cheng, Viswanathan Subha, Singh Ved P, Engel Gregory S

机构信息

Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.

Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Chem Phys. 2015 Sep 14;143(10):101101. doi: 10.1063/1.4930539.

Abstract

Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850(∗) states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.

摘要

在光合生物中,能量通过大型无序天线网络进行转移时,量子效率可接近100%。这种能量转移受光合天线的电子结构以及电子态与周围环境之间的相互作用推动。时域光谱中的量子相干为研究系统与周围环境的相互作用提供了一个精细的探针。在二维电子光谱中,基态和激发态表面都会出现量子相干,从而揭示复杂化学系统中有关电子结构、系统 - 浴耦合、能量转移和能量耦合的详细信息。大量研究已在分离的光合色素 - 蛋白复合物中发现了量子相干,但由于这些信号幅度小且全细胞散射强烈,在体内尚未观察到这些相干。在此,我们展示了使用超快视频采集梯度辅助光子回波光谱获取的数据,以观察体内相干产生的量子拍频信号。实验分别在球形红杆菌分离的光捕获复合物II(LH2)、球形红杆菌全细胞以及在30%氘代培养基中生长的球形红杆菌全细胞上进行。在室温下,对这3个样品中的每一个,用激光激发后,在LH2的B850和B850(*)态之间观察到了一个振动相干,其寿命约为40 - 60飞秒。

相似文献

2
Towards quantification of vibronic coupling in photosynthetic antenna complexes.
J Chem Phys. 2015 Jun 7;142(21):212446. doi: 10.1063/1.4921324.
4
Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):706-11. doi: 10.1073/pnas.1110312109. Epub 2012 Jan 3.
6
Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.
J Phys Chem A. 2012 Jan 12;116(1):282-9. doi: 10.1021/jp2088109. Epub 2011 Dec 22.
8
Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from Rhodobacter sphaeroides.
J Phys Chem A. 2016 Jun 23;120(24):4124-30. doi: 10.1021/acs.jpca.6b04146. Epub 2016 Jun 10.
10
Mutations to R. sphaeroides Reaction Center Perturb Energy Levels and Vibronic Coupling but Not Observed Energy Transfer Rates.
J Phys Chem A. 2016 Mar 10;120(9):1479-87. doi: 10.1021/acs.jpca.5b08366. Epub 2015 Dec 16.

引用本文的文献

1
DNA scaffold supports long-lived vibronic coherence in an indodicarbocyanine (Cy5) dimer.
Chem Sci. 2020 Jul 22;11(32):8546-8557. doi: 10.1039/d0sc01127d.
2
Coherent phenomena in photosynthetic light harvesting: part two-observations in biological systems.
Biophys Rev. 2018 Oct;10(5):1443-1463. doi: 10.1007/s12551-018-0456-x. Epub 2018 Sep 22.
3
Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.
Chem Sci. 2018 Feb 9;9(12):3095-3104. doi: 10.1039/c7sc04814a. eCollection 2018 Mar 28.
4
Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells.
Nat Commun. 2017 Oct 17;8(1):988. doi: 10.1038/s41467-017-01124-z.
6
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes.
Nano Lett. 2016 Nov 9;16(11):6850-6856. doi: 10.1021/acs.nanolett.6b02661. Epub 2016 Oct 10.
7
On the Evolution of the Mammalian Brain.
Front Syst Neurosci. 2016 Apr 19;10:31. doi: 10.3389/fnsys.2016.00031. eCollection 2016.

本文引用的文献

1
Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion.
Nat Phys. 2014 Sep 1;10(9):676-682. doi: 10.1038/nphys3017.
3
Towards quantification of vibronic coupling in photosynthetic antenna complexes.
J Chem Phys. 2015 Jun 7;142(21):212446. doi: 10.1063/1.4921324.
4
Coherence in energy transfer and photosynthesis.
Annu Rev Phys Chem. 2015 Apr;66:69-96. doi: 10.1146/annurev-physchem-040214-121713. Epub 2014 Dec 1.
6
Vibronic coherence in oxygenic photosynthesis.
Nat Chem. 2014 Aug;6(8):706-11. doi: 10.1038/nchem.2005. Epub 2014 Jul 13.
7
Energy transfer: Vibronic coherence unveiled.
Nat Chem. 2014 Mar;6(3):173-5. doi: 10.1038/nchem.1881.
9
Energy Transfer Observed in Live Cells Using Two-Dimensional Electronic Spectroscopy.
J Phys Chem Lett. 2013 Oct 11;4(21):3636-3640. doi: 10.1021/jz401944q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验