Zoppi Nicoletta, Chiarelli Nicola, Cinquina Valeria, Ritelli Marco, Colombi Marina
Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
Hum Mol Genet. 2015 Dec 1;24(23):6769-87. doi: 10.1093/hmg/ddv382. Epub 2015 Sep 16.
Arterial tortuosity syndrome (ATS) is an autosomal recessive connective tissue disorder caused by loss-of-function mutations in SLC2A10, which encodes facilitative glucose transporter 10 (GLUT10). The role of GLUT10 in ATS pathogenesis remains an enigma, and the transported metabolite(s), i.e. glucose and/or dehydroascorbic acid, have not been clearly elucidated. To discern the molecular mechanisms underlying the ATS aetiology, we performed gene expression profiling and biochemical studies on skin fibroblasts. Transcriptome analyses revealed the dysregulation of several genes involved in TGFβ signalling and extracellular matrix (ECM) homeostasis as well as the perturbation of specific pathways that control both the cell energy balance and the oxidative stress response. Biochemical and functional studies showed a marked increase in ROS-induced lipid peroxidation sustained by altered PPARγ function, which contributes to the redox imbalance and the compensatory antioxidant activity of ALDH1A1. ATS fibroblasts also showed activation of a non-canonical TGFβ signalling due to TGFBRI disorganization, the upregulation of TGFBRII and connective tissue growth factor, and the activation of the αvβ3 integrin transduction pathway, which involves p125FAK, p60Src and p38 MAPK. Stable GLUT10 expression in patients' fibroblasts normalized redox homeostasis and PPARγ activity, rescued canonical TGFβ signalling and induced partial ECM re-organization. These data add new insights into the ATS dysregulated biological pathways and definition of the pathomechanisms involved in this disorder.
动脉迂曲综合征(ATS)是一种常染色体隐性遗传性结缔组织疾病,由编码易化葡萄糖转运蛋白10(GLUT10)的SLC2A10功能缺失突变引起。GLUT10在ATS发病机制中的作用仍是一个谜,其转运的代谢物,即葡萄糖和/或脱氢抗坏血酸,尚未得到明确阐明。为了探究ATS病因背后的分子机制,我们对皮肤成纤维细胞进行了基因表达谱分析和生化研究。转录组分析揭示了参与转化生长因子β(TGFβ)信号传导和细胞外基质(ECM)稳态的几个基因的失调,以及控制细胞能量平衡和氧化应激反应的特定途径的紊乱。生化和功能研究表明,由过氧化物酶体增殖物激活受体γ(PPARγ)功能改变维持的活性氧(ROS)诱导的脂质过氧化显著增加,这导致了氧化还原失衡和乙醛脱氢酶1A1(ALDH1A1)的代偿性抗氧化活性。ATS成纤维细胞还表现出由于TGFβ受体I(TGFBRI)紊乱、TGFβ受体II(TGFBRII)和结缔组织生长因子上调以及涉及粘着斑激酶(p125FAK)、原癌基因酪氨酸蛋白激酶(p60Src)和p38丝裂原活化蛋白激酶(p38 MAPK)的αvβ3整合素转导途径激活而导致的非经典TGFβ信号传导激活。患者成纤维细胞中GLUT10的稳定表达使氧化还原稳态和PPARγ活性正常化,挽救了经典TGFβ信号传导并诱导了部分ECM重组。这些数据为ATS失调的生物学途径以及该疾病涉及的发病机制的定义提供了新的见解。