Kim Joon-Chul, Woo Sun-Hee
Laboratory of Physiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, South Korea.
J Physiol. 2015 Dec 1;593(23):5091-109. doi: 10.1113/JP271016. Epub 2015 Nov 4.
Atrial myocytes are exposed to shear stress during the cardiac cycle and haemodynamic disturbance. In response, they generate a longitudinally propagating global Ca(2+) wave. Here, we investigated the cellular mechanisms underlying the shear stress-mediated Ca(2+) wave, using two-dimensional confocal Ca(2+) imaging combined with a pressurized microflow system in single rat atrial myocytes. Shear stress of ∼16 dyn cm(-2) for 8 s induced ∼1.2 aperiodic longitudinal Ca(2+) waves (∼79 μm s(-1)) with a delay of 0.2-3 s. Pharmacological blockade of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors (IP3 Rs) abolished shear stress-induced Ca(2+) wave generation. Furthermore, in atrial myocytes from type 2 IP3R (IP3R2) knock-out mice, shear stress failed to induce longitudinal Ca(2+) waves. The phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the shear-induced longitudinal Ca(2+) wave. However, pretreating atrial cells with blockers for stretch-activated channels, Na(+)-Ca(2+) exchanger, transient receptor potential melastatin subfamily 4, or nicotinamide adenine dinucleotide phosphate oxidase did not suppress wave generation under shear stress. The P2 purinoceptor inhibitor suramin, and the potent P2Y1 receptor antagonist MRS 2179, both suppressed the Ca(2+) wave, whereas the P2X receptor antagonist, iso-PPADS, did not alter it. Suppression of gap junction hemichannels permeable to ATP or extracellular application of ATP-metabolizing apyrase inhibited the wave. Removal of external Ca(2+) to enhance hemichannel opening facilitated the wave generation. Our data suggest that longitudinally propagating, regenerative Ca(2+) release through RyRs is triggered by P2Y1-PLC-IP3R2 signalling that is activated by gap junction hemichannel-mediated ATP release in atrial myocytes under shear stress.
在心动周期和血液动力学紊乱期间,心房肌细胞会受到剪切应力的作用。作为响应,它们会产生沿纵向传播的整体Ca(2+)波。在此,我们使用二维共聚焦Ca(2+)成像技术结合加压微流系统,在单个大鼠心房肌细胞中研究了剪切应力介导的Ca(2+)波背后的细胞机制。约16达因/平方厘米的剪切应力持续8秒可诱导约1.2次非周期性纵向Ca(2+)波(约79微米/秒),延迟时间为0.2 - 3秒。ryanodine受体(RyRs)或肌醇1,4,5 - 三磷酸受体(IP3 Rs)的药理学阻断消除了剪切应力诱导的Ca(2+)波产生。此外,在2型IP3R(IP3R2)基因敲除小鼠的心房肌细胞中,剪切应力未能诱导纵向Ca(2+)波。磷脂酶C(PLC)抑制剂U73122可消除剪切诱导的纵向Ca(2+)波,而其无活性类似物U73343则无此作用。然而,用拉伸激活通道阻滞剂、钠钙交换体阻滞剂、瞬时受体电位香草素亚家族4阻滞剂或烟酰胺腺嘌呤二核苷酸磷酸氧化酶阻滞剂预处理心房细胞,在剪切应力下并不能抑制波的产生。P2嘌呤受体抑制剂苏拉明和强效P2Y1受体拮抗剂MRS 2179均可抑制Ca(2+)波,而P2X受体拮抗剂异 - PPADS则不会改变它。抑制对ATP通透的缝隙连接半通道或细胞外应用ATP代谢酶腺苷三磷酸双磷酸酶可抑制该波。去除细胞外Ca(2+)以增强半通道开放促进了波的产生。我们的数据表明,在剪切应力作用下,心房肌细胞中由缝隙连接半通道介导的ATP释放激活的P2Y1 - PLC - IP3R2信号传导触发了通过RyRs的纵向传播、再生性Ca(2+)释放。