Department of Chemistry and Energy Sciences Institute, Yale University , New Haven, Connecticut 06511, United States.
School of Chemistry and Chemical Engineering, Southeast University , Nanjing, Jiangsu 211189, China.
J Am Chem Soc. 2015 Oct 14;137(40):12946-53. doi: 10.1021/jacs.5b07071. Epub 2015 Sep 30.
The rechargeable lithium-sulfur battery is a promising option for energy storage applications because of its low cost and high energy density. The electrochemical performance of the sulfur cathode, however, is substantially compromised because of fast capacity decay caused by polysulfide dissolution/shuttling and low specific capacity caused by the poor electrical conductivities of the active materials. Herein we demonstrate a novel strategy to address these two problems by designing and synthesizing a carbon nanotube (CNT)/NiFe2O4-S ternary hybrid material structure. In this unique material architecture, each component synergistically serves a specific purpose: The porous CNT network provides fast electron conduction paths and structural stability. The NiFe2O4 nanosheets afford strong binding sites for trapping polysulfide intermediates. The fine S nanoparticles well-distributed on the CNT/NiFe2O4 scaffold facilitate fast Li(+) storage and release for energy delivery. The hybrid material exhibits balanced high performance with respect to specific capacity, rate capability, and cycling stability with outstandingly high Coulombic efficiency. Reversible specific capacities of 1350 and 900 mAh g(-1) are achieved at rates of 0.1 and 1 C respectively, together with an unprecedented cycling stability of ∼0.009% capacity decay per cycle over more than 500 cycles.
可充电锂硫电池因其低成本和高能量密度而成为储能应用的有前途的选择。然而,由于多硫化物溶解/穿梭引起的快速容量衰减以及活性材料的导电性差导致的低比容量,硫正极的电化学性能受到严重影响。在此,我们通过设计和合成碳纳米管(CNT)/NiFe2O4-S 三元杂化材料结构,展示了一种解决这两个问题的新策略。在这种独特的材料结构中,每个组成部分协同发挥特定作用:多孔 CNT 网络提供快速的电子传导路径和结构稳定性。NiFe2O4 纳米片为捕获多硫化物中间体提供了强结合位点。均匀分布在 CNT/NiFe2O4 支架上的细小 S 纳米颗粒有利于快速的 Li(+)存储和释放,以实现能量传递。该混合材料表现出平衡的高性能,具有高比容量、倍率性能和循环稳定性,以及出色的库仑效率。在 0.1 和 1 C 的倍率下,分别实现了 1350 和 900 mAh g(-1) 的可逆比容量,在 500 次循环以上的循环中,以约 0.009%的容量衰减率实现了前所未有的循环稳定性。
J Am Chem Soc. 2015-9-30
Nanotechnology. 2018-7-20
Acc Chem Res. 2012-10-25
ACS Appl Mater Interfaces. 2015-11-4
Nanomaterials (Basel). 2023-8-3
Nat Commun. 2017-9-7
Proc Natl Acad Sci U S A. 2017-4-4
Nat Mater. 2016-12-20