Liu Qian, Zhang Jianhua, He Shu-Ang, Zou Rujia, Xu Chaoting, Cui Zhe, Huang Xiaojuan, Guan Guoqiang, Zhang Wenlong, Xu Kaibing, Hu Junqing
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
Department of Physics, Donghua University, Shanghai, 201620, China.
Small. 2018 May;14(20):e1703816. doi: 10.1002/smll.201703816. Epub 2018 Apr 17.
Lithium-sulfur (Li-S) batteries are investigated intensively as a promising large-scale energy storage system owing to their high theoretical energy density. However, the application of Li-S batteries is prevented by a series of primary problems, including low electronic conductivity, volumetric fluctuation, poor loading of sulfur, and shuttle effect caused by soluble lithium polysulfides. Here, a novel composite structure of sulfur nanoparticles attached to porous-carbon nanotube (p-CNT) encapsulated by hollow MnO nanoflakes film to form p-CNT@Void@MnO /S composite structures is reported. Benefiting from p-CNTs and sponge-like MnO nanoflake film, p-CNT@Void@MnO /S provides highly efficient pathways for the fast electron/ion transfer, fixes sulfur and Li S aggregation efficiently, and prevents polysulfide dissolution during cycling. Besides, the additional void inside p-CNT@Void@MnO /S composite structure provides sufficient free space for the expansion of encapsulated sulfur nanoparticles. The special material composition and structural design of p-CNT@Void@MnO /S composite structure with a high sulfur content endow the composite high capacity, high Coulombic efficiency, and an excellent cycling stability. The capacity of p-CNT@Void@MnO /S electrode is ≈599.1 mA h g for the fourth cycle and ≈526.1 mA h g after 100 cycles, corresponding to a capacity retention of ≈87.8% at a high current density of 1.0 C.
锂硫(Li-S)电池因其高理论能量密度而被作为一种有前景的大规模储能系统进行深入研究。然而,一系列主要问题阻碍了Li-S电池的应用,包括电子传导率低、体积波动、硫负载不佳以及可溶性多硫化锂引起的穿梭效应。在此,报道了一种新型复合结构,即硫纳米颗粒附着于由中空MnO纳米片膜包裹的多孔碳纳米管(p-CNT)上,形成p-CNT@Void@MnO /S复合结构。得益于p-CNT和海绵状MnO纳米片膜,p-CNT@Void@MnO /S为快速电子/离子转移提供了高效途径,有效固定了硫和Li S聚集体,并防止了循环过程中多硫化物的溶解。此外,p-CNT@Void@MnO /S复合结构内部的额外空隙为被包裹的硫纳米颗粒的膨胀提供了足够的自由空间。具有高硫含量的p-CNT@Void@MnO /S复合结构的特殊材料组成和结构设计赋予了该复合材料高容量、高库仑效率和出色的循环稳定性。p-CNT@Void@MnO /S电极在第四个循环时的容量约为599.1 mA h g,在100个循环后约为526.1 mA h g,在1.0 C的高电流密度下对应的容量保持率约为87.8%。