Suppr超能文献

急性卒中后阶段慢性运动结局的个体预测:行为参数与功能成像

Individual prediction of chronic motor outcome in the acute post-stroke stage: Behavioral parameters versus functional imaging.

作者信息

Rehme Anne K, Volz Lukas J, Feis Delia-Lisa, Eickhoff Simon B, Fink Gereon R, Grefkes Christian

机构信息

Department of Neurology, University of Cologne, Cologne, Germany.

Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, Jülich, Germany.

出版信息

Hum Brain Mapp. 2015 Nov;36(11):4553-65. doi: 10.1002/hbm.22936. Epub 2015 Aug 19.

Abstract

Several neurobiological factors have been found to correlate with functional recovery after brain lesions. However, predicting the individual potential of recovery remains difficult. Here we used multivariate support vector machine (SVM) classification to explore the prognostic value of functional magnetic resonance imaging (fMRI) to predict individual motor outcome at 4-6 months post-stroke. To this end, 21 first-ever stroke patients with hand motor deficits participated in an fMRI hand motor task in the first few days post-stroke. Motor impairment was quantified assessing grip force and the Action Research Arm Test. Linear SVM classifiers were trained to predict good versus poor motor outcome of unseen new patients. We found that fMRI activity acquired in the first week post-stroke correctly predicted the outcome for 86% of all patients. In contrast, the concurrent assessment of motor function provided 76% accuracy with low sensitivity (<60%). Furthermore, the outcome of patients with initially moderate impairment and high outcome variability could not be predicted based on motor tests. In contrast, fMRI provided 87.5% prediction accuracy in these patients. Classifications were driven by activity in ipsilesional motor areas and contralesional cerebellum. The accuracy of subacute fMRI data (two weeks post-stroke), age, time post-stroke, lesion volume, and location were at 50%-chance-level. In conclusion, multivariate decoding of fMRI data with SVM early after stroke enables a robust prediction of motor recovery. The potential for recovery is influenced by the initial dysfunction of the active motor system, particularly in those patients whose outcome cannot be predicted by behavioral tests.

摘要

已发现多种神经生物学因素与脑损伤后的功能恢复相关。然而,预测个体的恢复潜力仍然困难。在此,我们使用多变量支持向量机(SVM)分类来探索功能磁共振成像(fMRI)对预测中风后4 - 6个月个体运动结局的预后价值。为此,21例首次发生中风且有手部运动功能障碍的患者在中风后的头几天参与了一项fMRI手部运动任务。通过评估握力和动作研究手臂测试对运动障碍进行量化。训练线性SVM分类器以预测未见过的新患者的良好与不良运动结局。我们发现,中风后第一周获得的fMRI活动正确预测了所有患者中86%的结局。相比之下,同时进行的运动功能评估准确率为76%,敏感性较低(<60%)。此外,基于运动测试无法预测最初中度损伤且结局变异性高的患者的结局。相比之下,fMRI在这些患者中的预测准确率为87.5%。分类由患侧运动区和对侧小脑的活动驱动。亚急性fMRI数据(中风后两周)、年龄、中风后时间、病变体积和位置的准确率处于50%的机遇水平。总之,中风后早期使用SVM对fMRI数据进行多变量解码能够可靠地预测运动恢复。恢复潜力受活跃运动系统初始功能障碍的影响,特别是在那些行为测试无法预测结局的患者中。

相似文献

2
Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke.
Neuroimage Clin. 2017 Jan 26;14:518-529. doi: 10.1016/j.nicl.2017.01.023. eCollection 2017.
4
Prognostic value of FMRI in recovery of hand function in subcortical stroke patients.
Cereb Cortex. 2007 Dec;17(12):2980-7. doi: 10.1093/cercor/bhm023. Epub 2007 Mar 26.
5
Activation likelihood estimation meta-analysis of motor-related neural activity after stroke.
Neuroimage. 2012 Feb 1;59(3):2771-82. doi: 10.1016/j.neuroimage.2011.10.023. Epub 2011 Oct 17.
6
Early functional magnetic resonance imaging activations predict language outcome after stroke.
Brain. 2010 Apr;133(Pt 4):1252-64. doi: 10.1093/brain/awq021. Epub 2010 Mar 18.
8
Identifying Neuroimaging Markers of Motor Disability in Acute Stroke by Machine Learning Techniques.
Cereb Cortex. 2015 Sep;25(9):3046-56. doi: 10.1093/cercor/bhu100. Epub 2014 May 16.
9
Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis.
Stroke. 2014 Apr;45(4):1077-83. doi: 10.1161/STROKEAHA.113.003168. Epub 2014 Feb 13.
10
Longitudinal changes of resting-state functional connectivity during motor recovery after stroke.
Stroke. 2011 May;42(5):1357-62. doi: 10.1161/STROKEAHA.110.596155. Epub 2011 Mar 24.

引用本文的文献

1
Neuroimaging and biological markers of different paretic hand outcomes after stroke.
J Neuroeng Rehabil. 2025 Jul 5;22(1):150. doi: 10.1186/s12984-025-01682-0.
3
Neuroimaging biomarkers for predicting stroke outcomes: A systematic review.
Health Sci Rep. 2024 Jul 1;7(7):e2221. doi: 10.1002/hsr2.2221. eCollection 2024 Jul.
4
Behavioral and neuroanatomical correlates of facial emotion processing in post-stroke depression.
Neuroimage Clin. 2024;41:103586. doi: 10.1016/j.nicl.2024.103586. Epub 2024 Feb 27.
5
Neuroanatomy of post-stroke depression: the association between symptom clusters and lesion location.
Brain Commun. 2023 Oct 25;5(5):fcad275. doi: 10.1093/braincomms/fcad275. eCollection 2023.
6
Artificial intelligence applied in acute ischemic stroke: from child to elderly.
Radiol Med. 2024 Jan;129(1):83-92. doi: 10.1007/s11547-023-01735-1. Epub 2023 Oct 25.
7
Biomarkers for prognostic functional recovery poststroke: A narrative review.
Front Cell Dev Biol. 2023 Jan 9;10:1062807. doi: 10.3389/fcell.2022.1062807. eCollection 2022.
8
Home-based portable fNIRS-derived cortical laterality correlates with impairment and function in chronic stroke.
Front Hum Neurosci. 2022 Dec 9;16:1023246. doi: 10.3389/fnhum.2022.1023246. eCollection 2022.
10
Rho-Kinase Inhibition Improves the Outcome of Focal Subcortical White Matter Lesions.
Stroke. 2022 Jul;53(7):2369-2376. doi: 10.1161/STROKEAHA.121.037358. Epub 2022 Jun 3.

本文引用的文献

1
Post-stroke fatigue and its association with poor functional outcome after stroke in young adults.
J Neurol Neurosurg Psychiatry. 2015 Oct;86(10):1120-6. doi: 10.1136/jnnp-2014-308784. Epub 2014 Oct 31.
2
Identifying Neuroimaging Markers of Motor Disability in Acute Stroke by Machine Learning Techniques.
Cereb Cortex. 2015 Sep;25(9):3046-56. doi: 10.1093/cercor/bhu100. Epub 2014 May 16.
3
On the interpretation of weight vectors of linear models in multivariate neuroimaging.
Neuroimage. 2014 Feb 15;87:96-110. doi: 10.1016/j.neuroimage.2013.10.067. Epub 2013 Nov 15.
4
What predicts a poor outcome in older stroke survivors? A systematic review of the literature.
Disabil Rehabil. 2013 Oct;35(21):1774-82. doi: 10.3109/09638288.2012.756941. Epub 2013 Jan 25.
5
How useful is imaging in predicting outcomes in stroke rehabilitation?
Int J Stroke. 2013 Jan;8(1):33-7. doi: 10.1111/j.1747-4949.2012.00970.x.
6
Predicting activities after stroke: what is clinically relevant?
Int J Stroke. 2013 Jan;8(1):25-32. doi: 10.1111/j.1747-4949.2012.00967.x.
7
Heart disease and stroke statistics--2013 update: a report from the American Heart Association.
Circulation. 2013 Jan 1;127(1):e6-e245. doi: 10.1161/CIR.0b013e31828124ad. Epub 2012 Dec 12.
9
The PREP algorithm predicts potential for upper limb recovery after stroke.
Brain. 2012 Aug;135(Pt 8):2527-35. doi: 10.1093/brain/aws146. Epub 2012 Jun 10.
10
Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.
Neurosci Biobehav Rev. 2012 Apr;36(4):1140-52. doi: 10.1016/j.neubiorev.2012.01.004. Epub 2012 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验