Suppr超能文献

利用支持向量机识别神经和精神疾病的影像学生物标志物:一项批判性综述。

Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.

机构信息

Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, PO Box 67, London SE5 8AF, UK.

出版信息

Neurosci Biobehav Rev. 2012 Apr;36(4):1140-52. doi: 10.1016/j.neubiorev.2012.01.004. Epub 2012 Jan 28.

Abstract

Standard univariate analysis of neuroimaging data has revealed a host of neuroanatomical and functional differences between healthy individuals and patients suffering a wide range of neurological and psychiatric disorders. Significant only at group level however these findings have had limited clinical translation, and recent attention has turned toward alternative forms of analysis, including Support-Vector-Machine (SVM). A type of machine learning, SVM allows categorisation of an individual's previously unseen data into a predefined group using a classification algorithm, developed on a training data set. In recent years, SVM has been successfully applied in the context of disease diagnosis, transition prediction and treatment prognosis, using both structural and functional neuroimaging data. Here we provide a brief overview of the method and review those studies that applied it to the investigation of Alzheimer's disease, schizophrenia, major depression, bipolar disorder, presymptomatic Huntington's disease, Parkinson's disease and autistic spectrum disorder. We conclude by discussing the main theoretical and practical challenges associated with the implementation of this method into the clinic and possible future directions.

摘要

标准的单变量神经影像学数据分析揭示了健康个体与患有各种神经和精神疾病的患者之间存在大量的神经解剖和功能差异。然而,这些发现仅在群体水平上具有显著意义,在临床中的转化应用十分有限,因此最近人们开始关注其他形式的分析方法,包括支持向量机 (SVM)。SVM 是一种机器学习方法,它允许使用分类算法将个体以前未见过的数据归类到预定义的组中,该分类算法是在训练数据集上开发的。近年来,SVM 已成功应用于疾病诊断、病情预测和治疗预后等领域,同时还应用于结构和功能神经影像学数据。本文简要概述了该方法,并回顾了将其应用于阿尔茨海默病、精神分裂症、重度抑郁症、双相情感障碍、亨廷顿病前体、帕金森病和自闭症谱系障碍研究的相关文献。最后,本文讨论了将该方法应用于临床实践所面临的主要理论和实际挑战,以及未来可能的发展方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验