Suppr超能文献

果蝇翅膀中味觉化学感应刚毛和气管的纳米结构。

Nano-architecture of gustatory chemosensory bristles and trachea in Drosophila wings.

作者信息

Valmalette Jean Christophe, Raad Hussein, Qiu Nan, Ohara Satoshi, Capovilla Maria, Robichon Alain

机构信息

Aix Marseille Université, CNRS, IM2NP, UMR 7334, Case 907, 13288 Marseille, France.

Université de Toulon, CNRS, IM2NP, UMR 7334, 83957 La Garde, France.

出版信息

Sci Rep. 2015 Sep 18;5:14198. doi: 10.1038/srep14198.

Abstract

In the Drosophila wing anterior margin, the dendrites of gustatory neurons occupy the interior of thin and long bristles that present tiny pores at their extremities. Many attempts to measure ligand-evoked currents in insect wing gustatory neurons have been unsuccessful for technical reasons. The functions of this gustatory activity therefore remain elusive and controversial. To advance our knowledge on this understudied tissue, we investigated the architecture of the wing chemosensory bristles and wing trachea using Raman spectroscopy and fluorescence microscopy. We hypothesized that the wing gustatory hair, an open-ended capillary tube, and the wing trachea constitute biological systems similar to nano-porous materials. We present evidence that argues in favour of the existence of a layer or a bubble of air beneath the pore inside the gustatory hair. We demonstrate that these hollow hairs and wing tracheal tubes fulfil conditions for which the physics of fluids applied to open-ended capillaries and porous materials are relevant. We also document that the wing gustatory hair and tracheal architectures are capable of trapping volatile molecules from the environment, which might increase the efficiency of their spatial detection by way of wing vibrations or during flight.

摘要

在果蝇翅膀的前缘,味觉神经元的树突占据了细长刚毛的内部,这些刚毛在其末端有微小的孔。由于技术原因,许多测量昆虫翅膀味觉神经元中配体诱发电流的尝试都没有成功。因此,这种味觉活动的功能仍然难以捉摸且存在争议。为了增进我们对这个研究较少的组织的了解,我们使用拉曼光谱和荧光显微镜研究了翅膀化学感觉刚毛和翅膀气管的结构。我们假设翅膀味觉毛,一种开口的毛细管,和翅膀气管构成了类似于纳米多孔材料的生物系统。我们提供的证据支持在味觉毛内部的孔下方存在一层空气或一个气泡。我们证明这些空心毛和翅膀气管管满足了适用于开口毛细管和多孔材料的流体物理学相关的条件。我们还记录到翅膀味觉毛和气管结构能够捕获来自环境的挥发性分子,这可能通过翅膀振动或飞行提高它们空间检测的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验