Suppr超能文献

颞顶联合区、额下回沟和顶下小叶的空间选择性。

Spatial selectivity in the temporoparietal junction, inferior frontal sulcus, and inferior parietal lobule.

作者信息

Hansen Kathleen A, Chu Carlton, Dickinson Annelise, Pye Brandon, Weller J Patrick, Ungerleider Leslie G

出版信息

J Vis. 2015;15(13):15. doi: 10.1167/15.13.15.

Abstract

Spatial selectivity, as measured by functional magnetic resonance imaging (fMRI) activity patterns that vary consistently with the location of visual stimuli, has been documented in many human brain regions, notably the occipital visual cortex and the frontal and parietal regions that are active during endogenous, goal-directed attention. We hypothesized that spatial selectivity also exists in regions that are active during exogenous, stimulus-driven attention. To test this hypothesis, we acquired fMRI data while subjects maintained passive fixation. At jittered time intervals, a briefly presented wedge-shaped array of rapidly expanding circles appeared at one of three contralateral or one of three ipsilateral locations. Positive fMRI activations were identified in multiple brain regions commonly associated with exogenous attention, including the temporoparietal junction, the inferior parietal lobule, and the inferior frontal sulcus. These activations were not organized as a map across the cortical surface. However, multivoxel pattern analysis of the fMRI activity correctly classified every pair of stimulus locations, demonstrating that patterns of fMRI activity were correlated with spatial location. These observations held for both contralateral and ipsilateral stimulus pairs as well as for stimuli of different textures (radial checkerboard) and shapes (squares and rings). Permutation testing verified that the obtained accuracies were not due to systematic biases and demonstrated that the findings were statistically significant.

摘要

空间选择性,通过功能磁共振成像(fMRI)活动模式来衡量,这种模式会随着视觉刺激的位置而持续变化,已在许多人类脑区得到证实,特别是枕叶视觉皮层以及在内源性、目标导向性注意力过程中活跃的额叶和顶叶区域。我们假设在外源性、刺激驱动性注意力过程中活跃的区域也存在空间选择性。为了验证这一假设,我们在受试者保持被动注视时采集了fMRI数据。在抖动的时间间隔,一个短暂呈现的由快速扩展的圆圈组成的楔形阵列出现在三个对侧位置之一或三个同侧位置之一。在多个通常与外源性注意力相关的脑区中发现了正向fMRI激活,包括颞顶联合区、顶下小叶和额下回沟。这些激活并非在整个皮质表面组织成一幅图谱。然而,fMRI活动的多体素模式分析正确地对每对刺激位置进行了分类,表明fMRI活动模式与空间位置相关。这些观察结果对于对侧和同侧刺激对以及不同纹理(径向棋盘格)和形状(正方形和环形)的刺激均成立。置换检验证实所获得的准确率并非由于系统偏差,并表明这些发现具有统计学意义。

相似文献

2
Lesion evidence for the critical role of the intraparietal sulcus in spatial attention.
Brain. 2011 Jun;134(Pt 6):1694-709. doi: 10.1093/brain/awr085. Epub 2011 May 15.
4
Neural mechanisms of spatial stimulus-response compatibility: the effect of crossed-hand position.
Exp Brain Res. 2004 Sep;158(1):9-17. doi: 10.1007/s00221-004-1872-7. Epub 2004 Mar 17.
5
Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location.
Brain Res. 2010 May 12;1330:89-100. doi: 10.1016/j.brainres.2010.03.051. Epub 2010 Mar 19.
6
The role of parietal cortex during sustained visual spatial attention.
Brain Res. 2009 Dec 11;1302:157-66. doi: 10.1016/j.brainres.2009.09.031. Epub 2009 Sep 16.
7
Cortical fMRI activation produced by attentive tracking of moving targets.
J Neurophysiol. 1998 Nov;80(5):2657-70. doi: 10.1152/jn.1998.80.5.2657.
8
Neural mechanisms of visual attention: object-based selection of a region in space.
J Cogn Neurosci. 2000;12 Suppl 2:106-17. doi: 10.1162/089892900563975.
10
Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
Cereb Cortex. 2008 Sep;18(9):2158-68. doi: 10.1093/cercor/bhm242. Epub 2008 Jan 29.

引用本文的文献

2
Exploring the Role of Temporoparietal Cortex in Upright Perception and the Link With Torsional Eye Position.
Front Neurol. 2018 Apr 6;9:192. doi: 10.3389/fneur.2018.00192. eCollection 2018.
3
Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex.
Front Neurol. 2017 Oct 25;8:552. doi: 10.3389/fneur.2017.00552. eCollection 2017.

本文引用的文献

1
Analyses of regional-average activation and multivoxel pattern information tell complementary stories.
Neuropsychologia. 2012 Mar;50(4):544-52. doi: 10.1016/j.neuropsychologia.2011.11.007. Epub 2011 Nov 11.
2
Spatial neglect and attention networks.
Annu Rev Neurosci. 2011;34:569-99. doi: 10.1146/annurev-neuro-061010-113731.
3
Feature-specific attentional priority signals in human cortex.
J Neurosci. 2011 Mar 23;31(12):4484-95. doi: 10.1523/JNEUROSCI.5745-10.2011.
5
Encoding the identity and location of objects in human LOC.
Neuroimage. 2011 Feb 1;54(3):2297-307. doi: 10.1016/j.neuroimage.2010.09.044. Epub 2010 Sep 30.
6
Cortical surface-based searchlight decoding.
Neuroimage. 2011 May 15;56(2):582-92. doi: 10.1016/j.neuroimage.2010.07.035. Epub 2010 Jul 23.
7
Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex.
Neuroimage. 2010 Nov 1;53(2):526-33. doi: 10.1016/j.neuroimage.2010.06.063. Epub 2010 Jul 1.
9
Topographic maps in human frontal and parietal cortex.
Trends Cogn Sci. 2009 Nov;13(11):488-95. doi: 10.1016/j.tics.2009.08.005. Epub 2009 Sep 14.
10
Decoding neuronal ensembles in the human hippocampus.
Curr Biol. 2009 Apr 14;19(7):546-54. doi: 10.1016/j.cub.2009.02.033. Epub 2009 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验