Liu Cheng-Wei, Polkovnikov Anatoli, Sandvik Anders W, Young A P
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
Department of Physics, University of California, Santa Cruz, California 95064, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022128. doi: 10.1103/PhysRevE.92.022128. Epub 2015 Aug 19.
We use a nonequilibrium Monte Carlo simulation method and dynamical scaling to study the phase transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity v (temperature change versus time) in Monte Carlo simulations starting at a high temperature. This approach has the advantage that the equilibrium limit does not have to be strictly reached for a scaling analysis to yield critical exponents. For the dynamic exponent we obtain z=5.85(9) for bimodal couplings distribution and z=6.00(10) for the Gaussian case. Assuming universal dynamic scaling, we combine the two results and obtain z=5.93±0.07 for generic 3D Ising spin glasses.
我们使用非平衡蒙特卡罗模拟方法和动态标度来研究三维伊辛自旋玻璃中的相变。在蒙特卡罗模拟中,从高温开始以有限速度(v)(温度变化与时间的关系)反复接近转变点。这种方法的优点是,对于进行标度分析以得出临界指数而言,不必严格达到平衡极限。对于动态指数,我们得到双峰耦合分布时(z = 5.85(9)),高斯情况时(z = 6.00(10))。假设通用动态标度成立,我们将这两个结果结合起来,得到一般三维伊辛自旋玻璃的(z = 5.93±0.07)。