Suppr超能文献

二维各向同性伊辛自旋玻璃中具有正态分布耦合的动态标度。

Dynamic scaling in the two-dimensional Ising spin glass with normal-distributed couplings.

机构信息

Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.

Department of Physics and Center of Theoretical Sciences, National Taiwan University, Taipei 10607, Taiwan.

出版信息

Phys Rev E. 2017 Nov;96(5-1):052102. doi: 10.1103/PhysRevE.96.052102. Epub 2017 Nov 2.

Abstract

We carry out simulated annealing and employ a generalized Kibble-Zurek scaling hypothesis to study the two-dimensional Ising spin glass with normal-distributed couplings. The system has an equilibrium glass transition at temperature T=0. From a scaling analysis when T→0 at different annealing velocities v, we find power-law scaling in the system size for the velocity required in order to relax toward the ground state, v∼L^{-(z+1/ν)}, the Kibble-Zurek ansatz where z is the dynamic critical exponent and ν the previously known correlation-length exponent, ν≈3.6. We find z≈13.6 for both the Edwards-Anderson spin-glass order parameter and the excess energy. This is different from a previous study of the system with bimodal couplings [Rubin et al., Phys. Rev. E 95, 052133 (2017)2470-004510.1103/PhysRevE.95.052133] where the dynamics is faster (z is smaller) and the above two quantities relax with different dynamic exponents (with that of the energy being larger). We argue that the different behaviors arise as a consequence of the different low-energy landscapes: for normal-distributed couplings the ground state is unique (up to a spin reflection), while the system with bimodal couplings is massively degenerate. Our results reinforce the conclusion of anomalous entropy-driven relaxation behavior in the bimodal Ising glass. In the case of a continuous coupling distribution, our results presented here also indicate that, although Kibble-Zurek scaling holds, the perturbative behavior normally applying in the slow limit breaks down, likely due to quasidegenerate states, and the scaling function takes a different form.

摘要

我们进行了模拟退火,并采用广义的 Kibble-Zurek 标度假设来研究具有正态分布耦合的二维伊辛自旋玻璃。该系统在温度 T=0 处具有平衡玻璃转变。当 T→0 时,我们从不同退火速度 v 的标度分析中发现,为了弛豫到基态,系统大小所需的速度呈幂律标度,v∼L^{-(z+1/ν)},这是 Kibble-Zurek 假设,其中 z 是动力学临界指数,ν 是先前已知的关联长度指数,ν≈3.6。我们发现,对于 Edwards-Anderson 自旋玻璃序参量和过剩能,z≈13.6。这与以前具有双峰耦合的系统的研究不同[Rubin 等人,Phys. Rev. E 95, 052133 (2017)2470-004510.1103/PhysRevE.95.052133],其中动力学更快(z 更小),并且上述两个量具有不同的动力学指数(能量的指数更大)。我们认为,不同的行为是由于不同的低能景观造成的:对于正态分布的耦合,基态是唯一的(除了自旋反射),而具有双峰耦合的系统则是大量简并的。我们的结果加强了双峰伊辛玻璃中异常熵驱动弛豫行为的结论。在连续耦合分布的情况下,我们在这里提出的结果还表明,尽管 Kibble-Zurek 标度成立,但通常在慢极限下适用的微扰行为失效,可能是由于准简并态,并且标度函数采用不同的形式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验