Suppr超能文献

最小功涨落原理。

Principle of minimal work fluctuations.

作者信息

Xiao Gaoyang, Gong Jiangbin

机构信息

Department of Physics, National University of Singapore, Singapore 117542.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022130. doi: 10.1103/PhysRevE.92.022130. Epub 2015 Aug 19.

Abstract

Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

摘要

理解和控制微观及纳米尺度系统中的功涨落具有基础和实际意义。例如,考虑Jarzynski等式〈e-βW〉=e-βΔF,e-βW涨落的变化可能会影响e-βW的统计平均值向理论值e-βΔF收敛的速度,其中W是功,β是逆温度,ΔF是两个平衡态之间的自由能差。受我们之前旨在抑制功涨落的研究启发,在此我们得到了最小功涨落原理。简而言之,量子和经典绝热定理中所处理的绝热过程会产生e-βW的最小涨落。在量子领域,如果一个最初处于热平衡态的系统经历一个功的过程,但在时间演化过程中与热库隔离,那么一个无能级交叉的量子绝热过程(或一个与传统绝热过程达到相同终态的辅助绝热过程)会产生e-βW的最小涨落,其中W是由过程开始和结束时的两次能量测量所定义的量子功。在经典领域,经典功的过程可通过绝热过程实现,那么经典绝热过程也会产生e-βW的最小涨落。基于Landau-Zener过程的数值实验在量子领域证实了我们的理论,而我们在经典领域的理论解释了我们之前关于抑制经典功涨落的数值发现[G. Y. Xiao和J. B. Gong,《物理评论E》90,052132(2014)]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验