Xavier J C, Strunz W T, Beims M W
Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil.
Institut für Theoretische Physik, Technische Universität Dresden, D-01069 Dresden, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022908. doi: 10.1103/PhysRevE.92.022908. Epub 2015 Aug 17.
We consider the energy flow between a classical one-dimensional harmonic oscillator and a set of N two-dimensional chaotic oscillators, which represents the finite environment. Using linear response theory we obtain an analytical effective equation for the system harmonic oscillator, which includes a frequency dependent dissipation, a shift, and memory effects. The damping rate is expressed in terms of the environment mean Lyapunov exponent. A good agreement is shown by comparing theoretical and numerical results, even for environments with mixed (regular and chaotic) motion. Resonance between system and environment frequencies is shown to be more efficient to generate dissipation than larger mean Lyapunov exponents or a larger number of bath chaotic oscillators.
我们考虑一个经典的一维谐振子与一组 N 个二维混沌振子之间的能量流动,这组二维混沌振子代表有限环境。利用线性响应理论,我们得到了系统谐振子的一个解析有效方程,该方程包含频率依赖的耗散、频移和记忆效应。阻尼率用环境平均李雅普诺夫指数表示。通过比较理论结果和数值结果发现,即使对于具有混合(规则和混沌)运动的环境,二者也吻合得很好。结果表明,系统与环境频率之间的共振比更大的平均李雅普诺夫指数或更多数量的浴混沌振子更有效地产生耗散。