Suppr超能文献

湍流发电机的饱和

Saturation of the turbulent dynamo.

作者信息

Schober J, Schleicher D R G, Federrath C, Bovino S, Klessen R S

机构信息

Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg, Germany and Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden.

Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Avenida Esteban Iturra s/n Barrio Universitario, Casilla 160-C, Concepción, Chile.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):023010. doi: 10.1103/PhysRevE.92.023010. Epub 2015 Aug 6.

Abstract

The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

摘要

宇宙中强磁场的起源可以通过在小空间尺度上的湍流运动放大弱种子场,随后将磁能传输到更大尺度来解释。这个过程被称为湍流发电机,它取决于湍流的特性,即取决于流体动力学雷诺数和气体的可压缩性,以及磁扩散率。虽然我们知道线性 regime 中磁能的增长率,但从解析计算中并不知道饱和水平,即能够达到的磁能与湍动能的比值。在本文中,我们提出了一个基于有效湍流电阻率的尺度依赖饱和模型,该电阻率由湍流涡旋的周转时间尺度和磁能密度决定。与斯皮策值相比,磁电阻率增加,并且磁能谱达到最大值的有效尺度移动到更大的空间尺度。当峰值达到由临界磁雷诺数决定的特征波数 k☆时,这个过程结束。发电机的饱和水平还取决于湍流的类型,并且对于大磁普朗特数 Pm 和小磁普朗特数 Pm 的极限情况是不同的。使用我们的模型,对于 Pm≫1,我们发现饱和水平在 43.8%和 1.3%之间,对于 Pm≪1,饱和水平在 2.43%和 0.135%之间,其中较高的值对应于不可压缩湍流,较低的值对应于高度可压缩湍流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验