Schober Jennifer, Schleicher Dominik, Federrath Christoph, Klessen Ralf, Banerjee Robi
Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Überle-Strasse 2, D-69120 Heidelberg, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026303. doi: 10.1103/PhysRevE.85.026303. Epub 2012 Feb 3.
The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus it is expected to depend crucially on the nature of the turbulence. In this paper, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(ℓ)proportional ℓ([symbol see text])V}, where ℓ and v(ℓ) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_{crit}, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence ([symbol see text] = 1/3), we find that the critical magnetic Reynolds number is Rm(crit) (K) ≈ 110 and for Burgers turbulence ([symbol see text] = 1/2) Rm(crit)(B) ≈ 2700. Furthermore, we derive that the growth rate of the small-scale magnetic field for a general type of turbulence is Γ proportional Re((1-[symbol see text])/(1+[symbol see text])) in the limit of infinite magnetic Prandtl number. For decreasing magnetic Prandtl number (down to Pm >/~ 10), the growth rate of the small-scale dynamo decreases. The details of this drop depend on the WKB approximation, which becomes invalid for a magnetic Prandtl number of about unity.
小尺度发电机是一个将湍动能转化为磁能的过程,因此预计它将关键地依赖于湍流的性质。在本文中,我们提出了一个小尺度发电机模型,该模型考虑了湍流速度谱v(ℓ)∝ℓ^([符号见原文])V}的斜率,其中ℓ和v(ℓ)分别是湍流涨落的大小和该尺度上的典型速度。磁场涨落分量(即小尺度场)的时间演化由卡赞采夫方程描述。我们用量子力学的WKB近似求解这个线性微分方程的本征值。该方法的有效性作为磁普朗特数Pm的函数进行估计。我们使用湍流速度相关函数模型计算发电机作用的最小磁雷诺数Rm_{crit}。对于柯尔莫哥洛夫湍流([符号见原文]=1/3),我们发现临界磁雷诺数为Rm(crit)(K)≈110,对于伯格斯湍流([符号见原文]=1/2),Rm(crit)(B)≈2700。此外,我们推导得出,在无限磁普朗特数的极限下,一般类型湍流的小尺度磁场增长率为Γ∝Re^((1-[符号见原文])/(1+[符号见原文]))。随着磁普朗特数减小(低至Pm≈10),小尺度发电机的增长率降低。这种下降细节取决于WKB近似,当磁普朗特数约为1时,该近似变得无效。