Woldring Daniel R, Holec Patrick V, Zhou Hong, Hackel Benjamin J
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America.
PLoS One. 2015 Sep 18;10(9):e0138956. doi: 10.1371/journal.pone.0138956. eCollection 2015.
Discovering new binding function via a combinatorial library in small protein scaffolds requires balance between appropriate mutations to introduce favorable intermolecular interactions while maintaining intramolecular integrity. Sitewise constraints exist in a non-spatial gradient from diverse to conserved in evolved antibody repertoires; yet non-antibody scaffolds generally do not implement this strategy in combinatorial libraries. Despite the fact that biased amino acid distributions, typically elevated in tyrosine, serine, and glycine, have gained wider use in synthetic scaffolds, these distributions are still predominantly applied uniformly to diversified sites. While select sites in fibronectin domains and DARPins have shown benefit from sitewise designs, they have not been deeply evaluated. Inspired by this disparity between diversity distributions in natural libraries and synthetic scaffold libraries, we hypothesized that binders resulting from discovery and evolution would exhibit a non-spatial, sitewise gradient of amino acid diversity. To identify sitewise diversities consistent with efficient evolution in the context of a hydrophilic fibronectin domain, >105 binders to six targets were evolved and sequenced. Evolutionarily favorable amino acid distributions at 25 sites reveal Shannon entropies (range: 0.3-3.9; median: 2.1; standard deviation: 1.1) supporting the diversity gradient hypothesis. Sitewise constraints in evolved sequences are consistent with complementarity, stability, and consensus biases. Implementation of sitewise constrained diversity enables direct selection of nanomolar affinity binders validating an efficient strategy to balance inter- and intra-molecular interaction demands at each site.
通过小型蛋白质支架中的组合文库发现新的结合功能,需要在引入有利的分子间相互作用的适当突变与维持分子内完整性之间取得平衡。在进化的抗体库中,位点特异性限制以从多样到保守的非空间梯度存在;然而,非抗体支架通常不在组合文库中采用这种策略。尽管在合成支架中,通常在酪氨酸、丝氨酸和甘氨酸中升高的偏向氨基酸分布已得到更广泛的应用,但这些分布仍主要均匀地应用于多样化位点。虽然纤连蛋白结构域和DARPins中的某些位点已显示出位点特异性设计的益处,但尚未对其进行深入评估。受天然文库和合成支架文库中多样性分布差异的启发,我们假设通过发现和进化产生的结合物将表现出氨基酸多样性的非空间、位点特异性梯度。为了确定与亲水性纤连蛋白结构域背景下有效进化一致的位点特异性多样性,对六个靶标的>105个结合物进行了进化和测序。25个位点的进化上有利的氨基酸分布揭示了香农熵(范围:0.3 - 3.9;中位数:2.1;标准差:1.1),支持多样性梯度假说。进化序列中的位点特异性限制与互补性、稳定性和共有偏向一致。位点特异性受限多样性的实施能够直接选择纳摩尔亲和力的结合物,验证了一种在每个位点平衡分子间和分子内相互作用需求的有效策略。