Suppr超能文献

位点特异性多样性梯度促进三螺旋束蛋白支架中结合物发现的进化适应性。

A Gradient of Sitewise Diversity Promotes Evolutionary Fitness for Binder Discovery in a Three-Helix Bundle Protein Scaffold.

作者信息

Woldring Daniel R, Holec Patrick V, Stern Lawrence A, Du Yang, Hackel Benjamin J

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities , 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States.

Molecular and Cellular Physiology, Stanford University , 279 Campus Drive, Stanford, California 94305, United States.

出版信息

Biochemistry. 2017 Mar 21;56(11):1656-1671. doi: 10.1021/acs.biochem.6b01142. Epub 2017 Mar 9.

Abstract

Engineered proteins provide clinically and industrially impactful molecules and utility within fundamental research, yet inefficiencies in discovering lead variants with new desired functionality, while maintaining stability, hinder progress. Improved function, which can result from a few strategic mutations, is fundamentally separate from discovering novel function, which often requires large leaps in sequence space. While a highly diverse combinatorial library covering immense sequence space would empower protein discovery, the ability to sample only a minor subset of sequence space and the typical destabilization of random mutations preclude this strategy. A balance must be reached. At library scale, compounding several destabilizing mutations renders many variants unable to properly fold and devoid of function. Broadly searching sequence space while reducing the level of destabilization may enhance evolution. We exemplify this balance with affibody, a three-helix bundle protein scaffold. Using natural ligand data sets, stability and structural computations, and deep sequencing of thousands of binding variants, a protein library was designed on a sitewise basis with a gradient of mutational levels across 29% of the protein. In direct competition of biased and uniform libraries, both with 1 × 10 variants, for discovery of 6 × 10 ligands (5 × 10 clusters) toward seven targets, biased amino acid frequency increased ligand discovery 13 ± 3-fold. Evolutionarily favorable amino acids, both globally and site-specifically, are further elucidated. The sitewise amino acid bias aids evolutionary discovery by reducing the level of mutant destabilization as evidenced by a midpoint of denaturation (62 ± 4 °C) 15 °C higher than that of unbiased mutants (47 ± 11 °C; p < 0.001). Sitewise diversification, identified by high-throughput evolution and rational library design, improves discovery efficiency.

摘要

工程蛋白在基础研究中提供了具有临床和工业影响力的分子及应用,但在发现具有新期望功能的先导变体同时保持稳定性方面存在效率低下的问题,这阻碍了研究进展。由少数策略性突变导致的功能改善与发现新功能在本质上是不同的,发现新功能通常需要在序列空间中有较大的跨越。虽然一个高度多样化的组合文库覆盖巨大的序列空间将有助于蛋白质发现,但仅能对序列空间的一小部分进行采样的能力以及随机突变通常导致的不稳定,排除了这种策略。必须达成一种平衡。在文库规模上,多个不稳定突变的叠加使许多变体无法正确折叠且丧失功能。在减少不稳定程度的同时广泛搜索序列空间可能会促进进化。我们以三螺旋束蛋白支架亲和体为例来说明这种平衡。利用天然配体数据集、稳定性和结构计算以及对数千个结合变体的深度测序,基于位点设计了一个蛋白质文库,在蛋白质的29%范围内具有突变水平梯度。在偏向性文库和均匀文库(均有1×10个变体)针对七个靶标发现6×10个配体(5×10个簇)的直接竞争中,偏向性氨基酸频率使配体发现增加了13±3倍。进一步阐明了在全局和位点特异性方面进化上有利的氨基酸。位点特异性氨基酸偏向性通过降低突变体的不稳定程度来辅助进化发现,变性中点(62±4℃)比无偏向突变体(47±11℃;p<0.001)高15℃就证明了这一点。通过高通量进化和合理文库设计确定的位点特异性多样化提高了发现效率。

相似文献

1
A Gradient of Sitewise Diversity Promotes Evolutionary Fitness for Binder Discovery in a Three-Helix Bundle Protein Scaffold.
Biochemistry. 2017 Mar 21;56(11):1656-1671. doi: 10.1021/acs.biochem.6b01142. Epub 2017 Mar 9.
2
Constrained Combinatorial Libraries of Gp2 Proteins Enhance Discovery of PD-L1 Binders.
ACS Comb Sci. 2018 Jul 9;20(7):423-435. doi: 10.1021/acscombsci.8b00010. Epub 2018 Jun 5.
3
High-Throughput Ligand Discovery Reveals a Sitewise Gradient of Diversity in Broadly Evolved Hydrophilic Fibronectin Domains.
PLoS One. 2015 Sep 18;10(9):e0138956. doi: 10.1371/journal.pone.0138956. eCollection 2015.
4
Stability and CDR composition biases enrich binder functionality landscapes.
J Mol Biol. 2010 Aug 6;401(1):84-96. doi: 10.1016/j.jmb.2010.06.004. Epub 2010 Jun 9.
5
Monitored whole gene in vitro evolution of an anti-hRaf-1 affibody molecule towards increased binding affinity.
N Biotechnol. 2012 Jun 15;29(5):534-42. doi: 10.1016/j.nbt.2011.10.008. Epub 2011 Oct 19.
6
Engineering of Immunoglobulin Fc Heterodimers Using Yeast Surface-Displayed Combinatorial Fc Library Screening.
PLoS One. 2015 Dec 16;10(12):e0145349. doi: 10.1371/journal.pone.0145349. eCollection 2015.
7
Protein Engineering by Combined Computational and In Vitro Evolution Approaches.
Trends Biochem Sci. 2016 May;41(5):421-433. doi: 10.1016/j.tibs.2016.03.002. Epub 2016 Apr 6.
8
Directed evolution of the peroxidase activity of a de novo-designed protein.
Protein Eng Des Sel. 2012 Sep;25(9):445-52. doi: 10.1093/protein/gzs025. Epub 2012 Jun 3.
9
Solution structure of a de novo protein from a designed combinatorial library.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13270-3. doi: 10.1073/pnas.1835644100. Epub 2003 Oct 30.
10
Rational evolutionary design: the theory of in vitro protein evolution.
Adv Protein Chem. 2000;55:79-160. doi: 10.1016/s0065-3233(01)55003-2.

引用本文的文献

1
PANCS-Binders: a rapid, high-throughput binder discovery platform.
Nat Methods. 2025 Aug;22(8):1720-1730. doi: 10.1038/s41592-025-02740-0. Epub 2025 Aug 6.
3
High-throughput protein binder discovery by rapid in vivo selection.
bioRxiv. 2025 Jan 17:2025.01.06.631531. doi: 10.1101/2025.01.06.631531.
5
Hyperstable Synthetic Mini-Proteins as Effective Ligand Scaffolds.
ACS Synth Biol. 2023 Dec 15;12(12):3608-3622. doi: 10.1021/acssynbio.3c00409. Epub 2023 Nov 27.
6
Determinants of Developability and Evolvability of Synthetic Miniproteins as Ligand Scaffolds.
J Mol Biol. 2023 Dec 15;435(24):168339. doi: 10.1016/j.jmb.2023.168339. Epub 2023 Nov 3.
7
Protein engineering via sequence-performance mapping.
Cell Syst. 2023 Aug 16;14(8):656-666. doi: 10.1016/j.cels.2023.06.009. Epub 2023 Jul 25.
8
Moderate-Affinity Affibodies Modulate the Delivery and Bioactivity of Bone Morphogenetic Protein-2.
Adv Healthc Mater. 2023 Oct;12(26):e2300793. doi: 10.1002/adhm.202300793. Epub 2023 Jul 9.
10
Discovery of a Non-competitive TNFR1 Antagonist Affibody with Picomolar Monovalent Potency That Does Not Affect TNFR2 Function.
Mol Pharm. 2023 Apr 3;20(4):1884-1897. doi: 10.1021/acs.molpharmaceut.2c00385. Epub 2023 Mar 10.

本文引用的文献

1
BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts.
J Mol Biol. 2017 Feb 3;429(3):426-434. doi: 10.1016/j.jmb.2016.11.022. Epub 2016 Nov 27.
2
Deep sequencing methods for protein engineering and design.
Curr Opin Struct Biol. 2017 Aug;45:36-44. doi: 10.1016/j.sbi.2016.11.001. Epub 2016 Nov 22.
3
ScaffoldSeq: Software for characterization of directed evolution populations.
Proteins. 2016 Jul;84(7):869-74. doi: 10.1002/prot.25040. Epub 2016 Apr 16.
4
Direct Calculation of Protein Fitness Landscapes through Computational Protein Design.
Biophys J. 2016 Jan 5;110(1):75-84. doi: 10.1016/j.bpj.2015.11.029.
5
Synthetic and natural consensus design for engineering charge within an affibody targeting epidermal growth factor receptor.
Biotechnol Bioeng. 2016 Aug;113(8):1628-38. doi: 10.1002/bit.25931. Epub 2016 Feb 4.
6
Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles.
PLoS Comput Biol. 2015 Oct 27;11(10):e1004494. doi: 10.1371/journal.pcbi.1004494. eCollection 2015 Oct.
7
Protein stability: computation, sequence statistics, and new experimental methods.
Curr Opin Struct Biol. 2015 Aug;33:161-8. doi: 10.1016/j.sbi.2015.09.002.
8
High-Throughput Ligand Discovery Reveals a Sitewise Gradient of Diversity in Broadly Evolved Hydrophilic Fibronectin Domains.
PLoS One. 2015 Sep 18;10(9):e0138956. doi: 10.1371/journal.pone.0138956. eCollection 2015.
9
Systematic Mapping of Protein Mutational Space by Prolonged Drift Reveals the Deleterious Effects of Seemingly Neutral Mutations.
PLoS Comput Biol. 2015 Aug 14;11(8):e1004421. doi: 10.1371/journal.pcbi.1004421. eCollection 2015 Aug.
10
Measuring the activity of protein variants on a large scale using deep mutational scanning.
Nat Protoc. 2014 Sep;9(9):2267-84. doi: 10.1038/nprot.2014.153. Epub 2014 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验