Suppr超能文献

使用生物样本混合物作为RNA测序实验的过程对照。

Using mixtures of biological samples as process controls for RNA-sequencing experiments.

作者信息

Parsons Jerod, Munro Sarah, Pine P Scott, McDaniel Jennifer, Mehaffey Michele, Salit Marc

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.

Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.

出版信息

BMC Genomics. 2015 Sep 17;16(1):708. doi: 10.1186/s12864-015-1912-7.

Abstract

BACKGROUND

Genome-scale "-omics" measurements are challenging to benchmark due to the enormous variety of unique biological molecules involved. Mixtures of previously-characterized samples can be used to benchmark repeatability and reproducibility using component proportions as truth for the measurement. We describe and evaluate experiments characterizing the performance of RNA-sequencing (RNA-Seq) measurements, and discuss cases where mixtures can serve as effective process controls.

RESULTS

We apply a linear model to total RNA mixture samples in RNA-seq experiments. This model provides a context for performance benchmarking. The parameters of the model fit to experimental results can be evaluated to assess bias and variability of the measurement of a mixture. A linear model describes the behavior of mixture expression measures and provides a context for performance benchmarking. Residuals from fitting the model to experimental data can be used as a metric for evaluating the effect that an individual step in an experimental process has on the linear response function and precision of the underlying measurement while identifying signals affected by interference from other sources. Effective benchmarking requires well-defined mixtures, which for RNA-Seq requires knowledge of the post-enrichment 'target RNA' content of the individual total RNA components. We demonstrate and evaluate an experimental method suitable for use in genome-scale process control and lay out a method utilizing spike-in controls to determine enriched RNA content of total RNA in samples.

CONCLUSIONS

Genome-scale process controls can be derived from mixtures. These controls relate prior knowledge of individual components to a complex mixture, allowing assessment of measurement performance. The target RNA fraction accounts for differential selection of RNA out of variable total RNA samples. Spike-in controls can be utilized to measure this relationship between target RNA content and input total RNA. Our mixture analysis method also enables estimation of the proportions of an unknown mixture, even when component-specific markers are not previously known, whenever pure components are measured alongside the mixture.

摘要

背景

由于涉及的独特生物分子种类繁多,基因组规模的“组学”测量难以进行基准测试。先前已表征样本的混合物可用于以成分比例作为测量真值来基准测试重复性和再现性。我们描述并评估了表征RNA测序(RNA-Seq)测量性能的实验,并讨论了混合物可作为有效过程控制的情况。

结果

我们将线性模型应用于RNA-Seq实验中的总RNA混合物样本。该模型为性能基准测试提供了背景。可以评估拟合实验结果的模型参数,以评估混合物测量的偏差和变异性。线性模型描述了混合物表达测量的行为,并为性能基准测试提供了背景。将模型拟合到实验数据得到的残差可作为一种度量,用于评估实验过程中单个步骤对线性响应函数和基础测量精度的影响,同时识别受其他来源干扰影响的信号。有效的基准测试需要定义明确的混合物,对于RNA-Seq来说,这需要了解各个总RNA成分富集后的“靶RNA”含量。我们展示并评估了一种适用于基因组规模过程控制的实验方法,并提出了一种利用掺入对照来确定样本中总RNA富集RNA含量的方法。

结论

基因组规模的过程控制可以从混合物中推导出来。这些控制将各个成分的先验知识与复杂混合物联系起来,从而能够评估测量性能。靶RNA分数解释了从可变的总RNA样本中对RNA的差异选择。可以利用掺入对照来测量靶RNA含量与输入总RNA之间的这种关系。我们的混合物分析方法还能够估计未知混合物的比例,即使在以前不知道成分特异性标记的情况下,只要在测量混合物的同时测量纯成分即可。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc21/4574543/c8f1967b7db8/12864_2015_1912_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验