Zhang Wei, Zhang Xianglin, Liu Qiao, Wei Lei, Qiao Xu, Gao Rui, Liu Zhiping, Wang Xiaowo
Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan 250061, China.
Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
Genomics Proteomics Bioinformatics. 2025 Feb 18. doi: 10.1093/gpbjnl/qzaf009.
In recent years, computational methods for quantifying cell type proportions from transcription data have gained significant attention, particularly those reference-based methods which have demonstrated high accuracy. However, there is currently a lack of comprehensive evaluation and guidance for available reference-based deconvolution methods in cell proportion deconvolution analysis. In this study, we introduce Deconvolution Evaluator (Deconer), a comprehensive toolkit for the evaluation of reference-based deconvolution methods. Deconer provides various simulated and real gene expression datasets, including both bulk and single-cell sequencing data, and offers multiple visualization interfaces. By utilizing Deconer, we conducted systematic comparisons of 16 reference-based deconvolution methods from different perspectives, including method robustness, accuracy in deconvolving rare components, signature gene selection, and building external reference. We also performed an in-depth analysis of the application scenarios and challenges in cell proportion deconvolution methods. Finally, we provided constructive suggestions for users in selecting and developing cell proportion deconvolution algorithms. This work presents novel insights to researchers, assisting them in choosing appropriate toolkits, applying solutions in clinical contexts, and advancing the development of deconvolution tools tailored to gene expression data. The tutorials, manual, source code, and demo data of Deconer are publicly available at https://honchkrow.github.io/Deconer/.
近年来,用于从转录数据中量化细胞类型比例的计算方法受到了广泛关注,尤其是那些基于参考的方法,这些方法已证明具有很高的准确性。然而,目前在细胞比例反卷积分析中,对于可用的基于参考的反卷积方法缺乏全面的评估和指导。在本研究中,我们介绍了反卷积评估器(Deconer),这是一个用于评估基于参考的反卷积方法的综合工具包。Deconer提供了各种模拟和真实的基因表达数据集,包括批量和单细胞测序数据,并提供了多个可视化界面。通过使用Deconer,我们从不同角度对16种基于参考的反卷积方法进行了系统比较,包括方法的稳健性、反卷积稀有成分的准确性、特征基因选择以及构建外部参考。我们还对细胞比例反卷积方法的应用场景和挑战进行了深入分析。最后,我们为用户在选择和开发细胞比例反卷积算法方面提供了建设性的建议。这项工作为研究人员提供了新的见解,帮助他们选择合适的工具包,在临床环境中应用解决方案,并推动针对基因表达数据的反卷积工具的开发。Deconer的教程、手册、源代码和演示数据可在https://honchkrow.github.io/Deconer/上公开获取。