Suryawanshi Gajendra W, Hoffmann Alexander
Signaling Systems Laboratory, San Diego Center for Systems Biology (SDCSB) and the HIV Interaction Network Team (HINT), UCSD, La Jolla, CA 92093, USA; Institute for Quantitative and Computational Biosciences (QCB) and the Department of Microbiology, Immunology and Molecular Genetics (MIMG), UCLA, Los Angeles, CA 90095, USA.
Signaling Systems Laboratory, San Diego Center for Systems Biology (SDCSB) and the HIV Interaction Network Team (HINT), UCSD, La Jolla, CA 92093, USA; Institute for Quantitative and Computational Biosciences (QCB) and the Department of Microbiology, Immunology and Molecular Genetics (MIMG), UCLA, Los Angeles, CA 90095, USA.
J Theor Biol. 2015 Dec 7;386:89-104. doi: 10.1016/j.jtbi.2015.08.032. Epub 2015 Sep 16.
Human immunodeficiency virus-1 (HIV-1) employs accessory proteins to evade innate immune responses by neutralizing the anti-viral activity of host restriction factors. Apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, A3G) and bone marrow stromal cell antigen 2 (BST2) are host resistance factors that potentially inhibit HIV-1 infection. BST2 reduces viral production by tethering budding HIV-1 particles to virus producing cells, while A3G inhibits the reverse transcription (RT) process and induces viral genome hypermutation through cytidine deamination, generating fewer replication competent progeny virus. Two HIV-1 proteins counter these cellular restriction factors: Vpu, which reduces surface BST2, and Vif, which degrades cellular A3G. The contest between these host and viral proteins influences whether HIV-1 infection is established and progresses towards AIDS. In this work, we present an age-structured multi-scale viral dynamics model of in vivo HIV-1 infection. We integrated the intracellular dynamics of anti-viral activity of the host factors and their neutralization by HIV-1 accessory proteins into the virus/cell population dynamics model. We calculate the basic reproductive ratio (Ro) as a function of host-viral protein interaction coefficients, and numerically simulated the multi-scale model to understand HIV-1 dynamics following host factor-induced perturbations. We found that reducing the influence of Vpu triggers a drop in Ro, revealing the impact of BST2 on viral infection control. Reducing Vif׳s effect reveals the restrictive efficacy of A3G in blocking RT and in inducing lethal hypermutations, however, neither of these factors alone is sufficient to fully restrict HIV-1 infection. Interestingly, our model further predicts that BST2 and A3G function synergistically, and delineates their relative contribution in limiting HIV-1 infection and disease progression. We provide a robust modeling framework for devising novel combination therapies that target HIV-1 accessory proteins and boost antiviral activity of host factors.
人类免疫缺陷病毒1型(HIV-1)利用辅助蛋白来中和宿主限制因子的抗病毒活性,从而逃避天然免疫反应。载脂蛋白B信使核糖核酸编辑酶3G(APOBEC3G,A3G)和骨髓基质细胞抗原2(BST2)是可能抑制HIV-1感染的宿主抗性因子。BST2通过将出芽的HIV-1颗粒拴系到病毒产生细胞上来减少病毒产生,而A3G抑制逆转录(RT)过程并通过胞嘧啶脱氨诱导病毒基因组超突变,从而产生较少的具有复制能力的子代病毒。两种HIV-1蛋白可对抗这些细胞限制因子:Vpu可减少表面BST2,而Vif可降解细胞A3G。这些宿主蛋白与病毒蛋白之间的较量影响着HIV-1感染是否会发生以及是否会发展为艾滋病。在这项研究中,我们提出了一个体内HIV-1感染的年龄结构多尺度病毒动力学模型。我们将宿主因子抗病毒活性的细胞内动力学及其被HIV-1辅助蛋白中和的过程整合到病毒/细胞群体动力学模型中。我们计算了作为宿主-病毒蛋白相互作用系数函数的基本繁殖率(Ro),并对多尺度模型进行了数值模拟,以了解宿主因子诱导的扰动后HIV-1的动力学。我们发现降低Vpu的影响会导致Ro下降,这揭示了BST2对病毒感染控制的影响。降低Vif的作用揭示了A3G在阻断RT和诱导致死性超突变方面的限制效力,然而,单独这两个因子都不足以完全限制HIV-1感染。有趣的是,我们的模型进一步预测BST2和A3G具有协同作用,并描述了它们在限制HIV-1感染和疾病进展中的相对贡献。我们提供了一个强大的建模框架,用于设计针对HIV-1辅助蛋白并增强宿主因子抗病毒活性的新型联合疗法。