Pirotte Geert, Kesters Jurgen, Verstappen Pieter, Govaerts Sanne, Manca Jean, Lutsen Laurence, Vanderzande Dirk, Maes Wouter
Design & Synthesis of Organic Semiconductors (DSOS), Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan 1-Gebouw D, 3590, Diepenbeek, Belgium.
IMEC, IMOMEC, Universitaire Campus-Wetenschapspark 1, 3590, Diepenbeek, Belgium.
ChemSusChem. 2015 Oct 12;8(19):3228-33. doi: 10.1002/cssc.201500850. Epub 2015 Aug 21.
Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %.
有机光伏(OPV)作为一种具有吸引人的机械、美学和规模经济特征的太阳能电池技术,已引起了极大的关注。为了使OPV具备经济可行性,必须实现低成本、大规模的组件生产,同时提高优质材料的供应量,并使批次间的差异最小化。在这方面,连续流动化学可以成为一个强大的工具。在本论文中,针对高性能苯并二噻吩-噻吩并吡咯二酮共聚物PBDTTPD优化了一种流动方法,并通过系统的太阳能电池评估来探究材料质量。采用逐步方法将间歇过程转变为可重复且可扩展的连续流动过程。使用所获得的聚合物批次制造的太阳能电池器件的平均功率转换效率为7.2%。在引入基于离子聚噻吩的阴极夹层后,光伏性能可提高到最大效率9.1%。