van Gestel Natasja C, Dhungana Nirmala, Tissue David T, Zak John C
Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.
Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
Oecologia. 2016 Jan;180(1):265-77. doi: 10.1007/s00442-015-3452-x. Epub 2015 Sep 21.
High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.
土壤日温差(DTRsoil)对土壤微生物生物量和活性有负面影响,但其与季节性土壤湿度在调节生态系统功能方面的相互作用仍不清楚。在我们于奇瓦瓦沙漠进行的为期5年的田间研究中,我们在土壤表面上方15厘米处悬挂遮阳布,与未遮阳的地块相比,降低白天温度并提高夜间土壤温度,从而降低土壤日温差(在0.2厘米深度处降低5摄氏度),同时不改变平均温度。微生物生物量的产生主要受季节性降水调节,响应程度取决于土壤日温差。降低土壤日温差更一致地增加了微生物生物量氮(MBN;增加38%),而不是微生物生物量碳(MBC),春季和夏季的处理响应相似。土壤呼吸主要取决于土壤湿度,对降低土壤日温差的响应仅在较湿润的夏季土壤中明显(增加53%),而在干燥的春季土壤中不明显。降低土壤日温差对溶解有机碳、土壤有机质(SOM)和土壤无机氮(可提取的NO3 (-)-N + NH4 (+)-N)的浓度没有影响。微生物生物量氮增加而土壤无机氮不变表明氮循环速率加快或有其他氮源。如果氮循环速率增加而外部氮输入(大气氮沉降或固氮)没有变化,那么这个氮含量低且土壤有机质含量低的沙漠系统的生产力可能会随着日温差的持续降低而受到负面影响。因此,在较低土壤日温差条件下,干旱生态系统未来的氮平衡似乎通过氮沉降和土壤热负荷动态调节与未来降水格局相关联。