Suppr超能文献

量化植物和生态系统过程中的生态记忆

Quantifying ecological memory in plant and ecosystem processes.

作者信息

Ogle Kiona, Barber Jarrett J, Barron-Gafford Greg A, Bentley Lisa Patrick, Young Jessica M, Huxman Travis E, Loik Michael E, Tissue David T

机构信息

School of Life Sciences, Arizona State University, Tempe, AZ, USA.

出版信息

Ecol Lett. 2015 Mar;18(3):221-35. doi: 10.1111/ele.12399. Epub 2014 Dec 19.

Abstract

The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed SAM to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18-28% of response variation compared to models without antecedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time-series data and facilitating new hypothesis generation and additional research.

摘要

时间在生态学中的作用有着悠久的研究历史,但生态学家大多将注意力局限于同时期非生物条件对重要生态过程速率和规模的影响。然而,最近生态学家通过明确考虑前期条件的影响,对生态过程有了更深入的理解。为了广泛地助力研究时间的作用,我们评估了关于前期条件对当前生态动态影响的记忆长度、时间模式和强度。我们开发了随机前期建模(SAM)框架,作为一种灵活的分析方法,用于评估感兴趣系统中记忆的外源和内源过程成分。我们设计SAM以有助于揭示新的见解,促进进一步研究,并通过四个具有不同复杂程度和不同时间尺度的例子进行说明:气孔导度、土壤呼吸、生态系统生产力和树木生长。与没有前期效应的模型相比,具有前期效应的模型解释了额外18%-28%的响应变化。此外,SAM还能够识别记忆成分背后的潜在机制,从而揭示传统生态时间序列数据处理中不明显的时间特性,并促进新假设的产生和更多研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验