Suppr超能文献

基于贝叶斯的像差校正和数值衍射,用于改进生物样本的无透镜片上显微镜技术。

Bayesian-based aberration correction and numerical diffraction for improved lensfree on-chip microscopy of biological specimens.

作者信息

Wong Alexander, Kazemzadeh Farnoud, Jin Chao, Wang Xiao Yu

出版信息

Opt Lett. 2015 May 15;40(10):2233-6. doi: 10.1364/OL.40.002233.

Abstract

Lensfree on-chip microscopy is an emerging imaging technique that can be used to visualize and study biological specimens without the need for imaging lens systems. Important issues that can limit the performance of lensfree on-chip microscopy include interferometric aberrations, acquisition noise, and image reconstruction artifacts. In this study, we introduce a Bayesian-based method for performing aberration correction and numerical diffraction that accounts for all three of these issues to improve the effective numerical aperture (NA) and signal-to-noise ratio (SNR) of the reconstructed microscopic image. The proposed method was experimentally validated using the USAF resolution target as well as real waterborne Anabaena flos-aquae samples, demonstrating improvements in NA by ∼25% over the standard method, and improvements in SNR of 2.8 and 8.2 dB in the reconstructed image when compared to the reconstructed images produced using the standard method and a maximum likelihood estimation method, respectively.

摘要

无透镜片上显微镜是一种新兴的成像技术,可用于在无需成像透镜系统的情况下可视化和研究生物样本。可能限制无透镜片上显微镜性能的重要问题包括干涉像差、采集噪声和图像重建伪影。在本研究中,我们引入了一种基于贝叶斯的方法来进行像差校正和数值衍射,该方法考虑了所有这三个问题,以提高重建微观图像的有效数值孔径(NA)和信噪比(SNR)。所提出的方法通过使用美国空军分辨率靶标以及实际的水生鱼腥藻样本进行了实验验证,结果表明,与标准方法相比,NA提高了约25%,与使用标准方法和最大似然估计方法生成的重建图像相比,重建图像的SNR分别提高了2.8 dB和8.2 dB。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验