Suppr超能文献

调控脆性X综合征人类胚胎干细胞神经发生受损的分子机制。

Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells.

作者信息

Telias Michael, Mayshar Yoav, Amit Ami, Ben-Yosef Dalit

机构信息

1 The Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center , Tel Aviv, Israel .

2 Department of Cell and Developmental Biology Sackler Medical School, Tel Aviv University , Tel Aviv, Israel .

出版信息

Stem Cells Dev. 2015 Oct 15;24(20):2353-65. doi: 10.1089/scd.2015.0220.

Abstract

Fragile X syndrome (FXS) is the most common form of inherited cognitive impairment. It is caused by developmental inactivation of the FMR1 gene and the absence of its encoded protein FMRP, which plays pivotal roles in brain development and function. In FXS embryos with full FMR1 mutation, FMRP is expressed during early embryogenesis and is gradually downregulated at the third trimester of pregnancy. FX-human embryonic stem cells (FX-hESCs), derived from FX human blastocysts, demonstrate the same pattern of developmentally regulated FMR1 inactivation when subjected to in vitro neural differentiation (IVND). In this study, we used this in vitro human platform to explore the molecular mechanisms downstream to FMRP in the context of early human embryonic neurogenesis. Our results show a novel role for the SOX superfamily of transcription factors, specifically for SOX2 and SOX9, which could explain the reduced and delayed neurogenesis observed in FX cells. In addition, we assess in this study the "GSK3β theory of FXS" for the first time in a human-based model. We found no evidence for a pathological increase in GSK3β protein levels upon cellular loss of FMRP, in contrast to what was found in the brain of Fmr1 knockout mice. Our study adds novel data on potential downstream targets of FMRP and highlights the importance of the FX-hESC IVND system.

摘要

脆性X综合征(FXS)是遗传性认知障碍最常见的形式。它由FMR1基因的发育性失活及其编码蛋白FMRP的缺失所致,FMRP在大脑发育和功能中起关键作用。在FMR1基因完全突变的FXS胚胎中,FMRP在胚胎早期发育过程中表达,并在妊娠晚期逐渐下调。源自FX人类囊胚的FX-人类胚胎干细胞(FX-hESC)在进行体外神经分化(IVND)时,表现出相同的FMR1发育调控失活模式。在本研究中,我们利用这个体外人类平台,在早期人类胚胎神经发生的背景下探索FMRP下游的分子机制。我们的结果显示了转录因子SOX超家族的新作用,特别是SOX2和SOX9,这可以解释在FX细胞中观察到的神经发生减少和延迟。此外,我们在本研究中首次在基于人类的模型中评估“FXS的GSK3β理论”。与在Fmr1基因敲除小鼠大脑中发现的情况相反,我们没有发现FMRP细胞缺失时GSK3β蛋白水平病理性增加的证据。我们的研究增加了关于FMRP潜在下游靶点的新数据,并强调了FX-hESC IVND系统的重要性。

相似文献

1
Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells.
Stem Cells Dev. 2015 Oct 15;24(20):2353-65. doi: 10.1089/scd.2015.0220.
2
Functional Deficiencies in Fragile X Neurons Derived from Human Embryonic Stem Cells.
J Neurosci. 2015 Nov 18;35(46):15295-306. doi: 10.1523/JNEUROSCI.0317-15.2015.
5
Integrated transcriptome analysis of human iPS cells derived from a fragile X syndrome patient during neuronal differentiation.
Sci China Life Sci. 2016 Nov;59(11):1093-1105. doi: 10.1007/s11427-016-0194-6. Epub 2016 Oct 11.
7
Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis.
Stem Cells. 2017 Feb;35(2):374-385. doi: 10.1002/stem.2505. Epub 2016 Oct 26.
9
Normal Neurogenesis but Abnormal Gene Expression in Human Fragile X Cortical Progenitor Cells.
Stem Cells Dev. 2008 Feb;17(1):107-17. doi: 10.1089/scd.2007.0073.
10
Impaired Functional Connectivity Underlies Fragile X Syndrome.
Int J Mol Sci. 2022 Feb 12;23(4):2048. doi: 10.3390/ijms23042048.

引用本文的文献

1
Understanding pathophysiology in fragile X syndrome: a comprehensive review.
Neurogenetics. 2024 Nov 25;26(1):6. doi: 10.1007/s10048-024-00794-4.
2
PHF6-mediated transcriptional control of NSC via Ephrin receptors is impaired in the intellectual disability syndrome BFLS.
EMBO Rep. 2024 Mar;25(3):1256-1281. doi: 10.1038/s44319-024-00082-0. Epub 2024 Mar 1.
4
Reduced expression in transcriptome of human iPSC-derived neural progenitors modeling fragile X syndrome.
Front Cell Dev Biol. 2022 Nov 21;10:1034679. doi: 10.3389/fcell.2022.1034679. eCollection 2022.
6
Dysregulation of BMP, Wnt, and Insulin Signaling in Fragile X Syndrome.
Front Cell Dev Biol. 2022 Jul 6;10:934662. doi: 10.3389/fcell.2022.934662. eCollection 2022.
7
Impaired Functional Connectivity Underlies Fragile X Syndrome.
Int J Mol Sci. 2022 Feb 12;23(4):2048. doi: 10.3390/ijms23042048.
8
Rett Syndrome and Fragile X Syndrome: Different Etiology With Common Molecular Dysfunctions.
Front Cell Neurosci. 2021 Nov 19;15:764761. doi: 10.3389/fncel.2021.764761. eCollection 2021.

本文引用的文献

1
SOX2 reprograms resident astrocytes into neural progenitors in the adult brain.
Stem Cell Reports. 2015 May 12;4(5):780-94. doi: 10.1016/j.stemcr.2015.03.006. Epub 2015 Apr 23.
2
Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells.
Stem Cell Reports. 2015 Jan 13;4(1):37-46. doi: 10.1016/j.stemcr.2014.10.015. Epub 2014 Dec 4.
3
FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells.
Stem Cell Reports. 2014 Nov 11;3(5):699-706. doi: 10.1016/j.stemcr.2014.09.001. Epub 2014 Oct 3.
4
5
Electrical maturation of neurons derived from human embryonic stem cells.
F1000Res. 2014 Aug 19;3:196. doi: 10.12688/f1000research.4943.2. eCollection 2014.
6
Modeling neurodevelopmental disorders using human pluripotent stem cells.
Stem Cell Rev Rep. 2014 Aug;10(4):494-511. doi: 10.1007/s12015-014-9507-2.
7
iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth.
Stem Cells Dev. 2014 Aug 1;23(15):1777-87. doi: 10.1089/scd.2014.0030. Epub 2014 Apr 30.
8
Concise review: Fragile X proteins in stem cell maintenance and differentiation.
Stem Cells. 2014 Jul;32(7):1724-33. doi: 10.1002/stem.1698.
9
Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome.
Science. 2014 Feb 28;343(6174):1002-5. doi: 10.1126/science.1245831.
10
Pharmacological rescue of cortical synaptic and network potentiation in a mouse model for fragile X syndrome.
Neuropsychopharmacology. 2014 Jul;39(8):1955-67. doi: 10.1038/npp.2014.44. Epub 2014 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验