Suppr超能文献

使用摄影测量法和小型无人机进行三维树木维度评估

3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.

作者信息

Gatziolis Demetrios, Lienard Jean F, Vogs Andre, Strigul Nikolay S

机构信息

USDA Forest Service, Pacific Northwest Research Station, Portland, Oregon, United States of America.

Department of Mathematics, Washington State University Vancouver, Vancouver, Washington, United States of America.

出版信息

PLoS One. 2015 Sep 22;10(9):e0137765. doi: 10.1371/journal.pone.0137765. eCollection 2015.

Abstract

Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.

摘要

对单株树木进行详细、精确的三维(3D)呈现,是准确评估树木竞争、生长和形态可塑性的前提条件。直到最近,我们精确测量树木的维度、空间排列、形状以及树木组成部分形状的能力,一直受到技术、后勤限制和成本的制约。传统的森林生物测量方法只能提供部分测量数据,而且劳动强度大。诸如从空中平台操作的激光雷达等主动遥感技术,只能提供部分树冠重建信息。地面激光雷达的使用既费力,又存在便携性限制且成本高昂。在这项工作中,我们利用了小型无人机(UAV)、轻便且价格低廉的相机在功能和可用性方面的最新改进,开发了一种经济实惠的方法,用于获取树木和小树群的精确且全面的3D模型。该方法采用慢速飞行的无人机,沿着预定轨迹在目标树木附近及周围获取图像,并采用基于计算机视觉的方法处理这些图像,以获得详细的树木重建信息。在通过模拟确认了该方法的潜力之后,我们评估了几种无人机平台、图像采集策略和图像处理算法。我们提出了一种原创的、循序渐进的工作流程,该流程利用了开源程序和原创软件。我们预计,我们方法的未来发展和应用将增进我们对树木间竞争所产生的森林自组织的理解,并将催生基于单株树木的森林模型的优化版本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b7c/4579125/f6a98f7debe9/pone.0137765.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验