Suppr超能文献

在人口统计学推断中不考虑背景选择的后果。

The consequences of not accounting for background selection in demographic inference.

作者信息

Ewing Gregory B, Jensen Jeffrey D

机构信息

Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL SV IBI-SV UPJENSEN, AAB 0 46, Station 15, CH 1015, Lausanne, Switzerland.

Swiss Institute of Bioinformatics (SIB), EPFL SV IBI-SV UPJENSEN, AAB 0 46, Station 15, CH 1015, Lausanne, Switzerland.

出版信息

Mol Ecol. 2016 Jan;25(1):135-41. doi: 10.1111/mec.13390. Epub 2015 Oct 30.

Abstract

Recently, there has been increased awareness of the role of background selection (BGS) in both data analysis and modelling advances. However, BGS is still difficult to take into account because of tractability issues with simulations and difficulty with nonequilibrium demographic models. Often, simple rescaling adjustments of effective population size are used. However, there has been neither a proper characterization of how BGS could bias or shift inference when not properly taken into account, nor a thorough analysis of whether rescaling is a sufficient solution. Here, we carry out extensive simulations with BGS to determine biases and behaviour of demographic inference using an approximate Bayesian approach. We find that results can be positively misleading with significant bias, and describe the parameter space in which BGS models replicate observed neutral nonequilibrium expectations.

摘要

最近,人们越来越意识到背景选择(BGS)在数据分析和模型进展中的作用。然而,由于模拟的可处理性问题以及非平衡人口模型的困难,BGS仍然难以考虑在内。通常,会使用有效种群大小的简单重新缩放调整。然而,既没有对BGS在未得到妥善考虑时如何使推断产生偏差或偏移进行恰当的描述,也没有对重新缩放是否是一个充分的解决方案进行全面分析。在这里,我们使用BGS进行了广泛的模拟,以确定使用近似贝叶斯方法进行人口推断时的偏差和行为。我们发现结果可能会产生显著偏差并具有正向误导性,并描述了BGS模型复制观察到的中性非平衡预期的参数空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验