Ainsworth J, Buchan I
John Ainsworth, Centre for Health Informatics, University of Manchester, Manchester, M13 9PL, UK, E-mail:
Methods Inf Med. 2015;54(6):479-87. doi: 10.3414/ME15-01-0064. Epub 2015 Sep 17.
In this paper we aim to characterise the critical mass of linked data, methods and expertise required for health systems to adapt to the needs of the populations they serve - more recently known as learning health systems. The objectives are to: 1) identify opportunities to combine separate uses of common data sources in order to reduce duplication of data processing and improve information quality; 2) identify challenges in scaling-up the reuse of health data sufficiently to support health system learning.
The challenges and opportunities were identified through a series of e-health stakeholder consultations and workshops in Northern England from 2011 to 2014. From 2013 the concepts presented here have been refined through feedback to collaborators, including patient/citizen representatives, in a regional health informatics research network (www.herc.ac.uk).
Health systems typically have separate information pipelines for: 1) commissioning services; 2) auditing service performance; 3) managing finances; 4) monitoring public health; and 5) research. These pipelines share common data sources but usually duplicate data extraction, aggregation, cleaning/preparation and analytics. Suboptimal analyses may be performed due to a lack of expertise, which may exist elsewhere in the health system but is fully committed to a different pipeline. Contextual knowledge that is essential for proper data analysis and interpretation may be needed in one pipeline but accessible only in another. The lack of capable health and care intelligence systems for populations can be attributed to a legacy of three flawed assumptions: 1) universality: the generalizability of evidence across populations; 2) time-invariance: the stability of evidence over time; and 3) reducibility: the reduction of evidence into specialised sub-systems that may be recombined.
We conceptualize a population health and care intelligence system capable of supporting health system learning and we put forward a set of maturity tests of progress toward such a system. A factor common to each test is data-action latency; a mature system spawns timely actions proportionate to the information that can be derived from the data, and in doing so creates meaningful measurement about system learning. We illustrate, using future scenarios, some major opportunities to improve health systems by exchanging conventional intelligence pipelines for networked critical masses of data, methods and expertise that minimise data-action latency and ignite system-learning.
在本文中,我们旨在描述健康系统适应其服务人群需求(最近被称为学习型健康系统)所需的关联数据、方法和专业知识的临界质量。目标如下:1)确定合并通用数据源的不同用途的机会,以减少数据处理的重复并提高信息质量;2)确定在充分扩大健康数据再利用规模以支持健康系统学习方面所面临的挑战。
通过2011年至2014年在英格兰北部开展的一系列电子健康利益相关者咨询和研讨会确定了挑战与机会。从2013年起,通过向包括患者/公民代表在内的区域健康信息学研究网络(www.herc.ac.uk)的合作者反馈,对这里提出的概念进行了完善。
健康系统通常有用于以下方面的独立信息管道:1)委托服务;2)审计服务绩效;3)管理财务;4)监测公共卫生;5)研究。这些管道共享通用数据源,但通常会重复进行数据提取、汇总、清理/准备和分析。由于缺乏专业知识,可能会进行次优分析,而这些专业知识可能在健康系统的其他地方存在,但已完全投入到不同的管道中。在一个管道中可能需要对数据分析和解释至关重要的背景知识,但只能在另一个管道中获取。缺乏适用于人群的有效健康和护理情报系统可归因于三个有缺陷假设的遗留问题:1)普遍性:证据在人群中的可推广性;2)时间不变性:证据随时间的稳定性;3)可还原性:将证据简化为可重新组合的专门子系统。
我们构思了一个能够支持健康系统学习的人群健康和护理情报系统,并提出了一套朝着这样一个系统发展的成熟度测试。每个测试的一个共同因素是数据 - 行动延迟;一个成熟的系统会根据从数据中得出的信息及时采取相应行动,从而对系统学习进行有意义的衡量。我们通过未来情景说明,通过用联网的关键数据、方法和专业知识群体取代传统情报管道,以尽量减少数据 - 行动延迟并激发系统学习,从而改善健康系统的一些主要机会。