Malinge Jeremy, Mousseau Fanny, Zanchi Drazen, Brun Geoffrey, Tribet Christophe, Marie Emmanuelle
Ecole Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005 Paris, France; CNRS, UMR 8640 PASTEUR, F-75005 Paris, France.
Ecole Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005 Paris, France; CNRS, UMR 8640 PASTEUR, F-75005 Paris, France; Université de Paris 7 Denis Diderot, 5 rue Thomas Mann, 75013 Paris, France.
J Colloid Interface Sci. 2016 Jan 1;461:50-55. doi: 10.1016/j.jcis.2015.09.016. Epub 2015 Sep 7.
We report a simple and versatile method to functionalize anionic colloid particles and control particle solubility. Poly(lysine)-based copolymers (PLL) grafted with polyethylene oxide (PLL-g-PEG) or poly(N-isopropylacrylamide) (PLL-g-PNIPAM) spontaneously adsorb on bare beads dispersed in aqueous solutions of the copolymers. The final composition of the mixed ad-layers formed (i.e. PEG/PNIPAM ratio) was adjusted by the polymer concentrations in solutions. While the (PLL-g-PEG)-coated particles were stable in a wide range of temperature, the presence of PLL-g-PNIPAM in the outer layer provided a reversible temperature-triggered aggregation at 32±1 °C. In the range of PNIPAM fraction going from 100% (beads fully covered by PLL-g-PNIPAM) down to a threshold 20% weight ratio (with 80% PLL-g-PEG), the particles aggregated rapidly to form micrometer size clusters. Below 20% weight fraction of PLL-g-PNIPAM, the kinetic was drastically lowered. Using PLL derivatives provides a straightforward route allowing to control the fraction of a functional chain (here PNIPAM) deposited on PEGylated particles, and in turn to adjust surface interaction and here the rate of particle-particle aggregation as a function of the density of functional chains. This approach can be generalized to many anionic surfaces onto which PLL is known to adhere tightly, such as glass or silica.
我们报道了一种简单且通用的方法,用于使阴离子胶体颗粒功能化并控制颗粒的溶解度。接枝有聚环氧乙烷(PLL-g-PEG)或聚(N-异丙基丙烯酰胺)(PLL-g-PNIPAM)的基于聚赖氨酸的共聚物(PLL)会自发吸附在分散于共聚物水溶液中的裸珠上。通过溶液中的聚合物浓度来调节形成的混合吸附层的最终组成(即PEG/PNIPAM比例)。虽然(PLL-g-PEG)包覆的颗粒在很宽的温度范围内都很稳定,但外层中PLL-g-PNIPAM的存在会在32±1°C时引发可逆的温度触发聚集。在PNIPAM含量从100%(珠子完全被PLL-g-PNIPAM覆盖)降至阈值重量比20%(含80% PLL-g-PEG)的范围内,颗粒迅速聚集形成微米级尺寸的聚集体。当PLL-g-PNIPAM的重量分数低于20%时,动力学显著降低。使用PLL衍生物提供了一条直接的途径,能够控制沉积在聚乙二醇化颗粒上的功能链(此处为PNIPAM)的比例,进而调节表面相互作用,在此即颗粒间聚集速率作为功能链密度的函数。这种方法可以推广到许多已知PLL能紧密附着的阴离子表面,如玻璃或二氧化硅。