Suppr超能文献

探索森林而非树木:一种定义致肥胖和抗肥胖环境的创新方法。

Exploring the forest instead of the trees: An innovative method for defining obesogenic and obesoprotective environments.

作者信息

Nau Claudia, Ellis Hugh, Huang Hongtai, Schwartz Brian S, Hirsch Annemarie, Bailey-Davis Lisa, Kress Amii M, Pollak Jonathan, Glass Thomas A

机构信息

Johns Hopkins Bloomberg School of Public Health Global Obesity Prevention Center, 615 N Wolfe Street, Baltimore, MD 21205, USA.

Johns Hopkins Bloomberg School of Public Health Global Obesity Prevention Center, 615 N Wolfe Street, Baltimore, MD 21205, USA; Johns Hopkins Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD 21218, USA.

出版信息

Health Place. 2015 Sep;35:136-46. doi: 10.1016/j.healthplace.2015.08.002. Epub 2015 Sep 19.

Abstract

Past research has assessed the association of single community characteristics with obesity, ignoring the spatial co-occurrence of multiple community-level risk factors. We used conditional random forests (CRF), a non-parametric machine learning approach to identify the combination of community features that are most important for the prediction of obesogenic and obesoprotective environments for children. After examining 44 community characteristics, we identified 13 features of the social, food, and physical activity environment that in combination correctly classified 67% of communities as obesoprotective or obesogenic using mean BMI-z as a surrogate. Social environment characteristics emerged as most important classifiers and might provide leverage for intervention. CRF allows consideration of the neighborhood as a system of risk factors.

摘要

过去的研究评估了单一社区特征与肥胖之间的关联,而忽略了多种社区层面风险因素的空间共现情况。我们使用条件随机森林(CRF)这一非参数机器学习方法,来确定对于预测儿童致肥胖和防肥胖环境最为重要的社区特征组合。在考察了44个社区特征后,我们确定了社会、食物和身体活动环境的13个特征,这些特征结合起来,以平均BMI-z作为替代指标,可将67%的社区正确分类为防肥胖或致肥胖社区。社会环境特征成为最重要的分类指标,可能为干预提供着力点。CRF能够将邻里社区视为一个风险因素系统加以考量。

相似文献

1
Exploring the forest instead of the trees: An innovative method for defining obesogenic and obesoprotective environments.
Health Place. 2015 Sep;35:136-46. doi: 10.1016/j.healthplace.2015.08.002. Epub 2015 Sep 19.
2
Food environments and childhood weight status: effects of neighborhood median income.
Child Obes. 2015 Jun;11(3):260-8. doi: 10.1089/chi.2014.0139. Epub 2015 Apr 29.
3
Collective efficacy and obesity: the potential influence of social factors on health.
Soc Sci Med. 2006 Feb;62(3):769-78. doi: 10.1016/j.socscimed.2005.06.033. Epub 2005 Jul 21.
4
Measuring Obesogenicity and Assessing Its Impact on Child Obesity: A Cross-Sectional Ecological Study for England Neighbourhoods.
Int J Environ Res Public Health. 2022 Aug 31;19(17):10865. doi: 10.3390/ijerph191710865.
5
Obesogenic environment: a concept analysis and pediatric perspective.
J Spec Pediatr Nurs. 2013 Jul;18(3):202-10. doi: 10.1111/jspn.12027. Epub 2013 Apr 23.
6
Obesogenic environments: Are neighbourhood environments that limit physical activity obesogenic?
Health Place. 2009 Dec;15(4):917-24. doi: 10.1016/j.healthplace.2009.02.001. Epub 2009 Feb 14.
8
Obesogenic environment and childhood obesity.
Obes Rev. 2021 Feb;22 Suppl 1:e13158. doi: 10.1111/obr.13158. Epub 2020 Nov 30.
10
Longitudinal association of neighborhood variables with Body Mass Index in Dutch school-age children: The KOALA Birth Cohort Study.
Soc Sci Med. 2015 Jun;135:99-108. doi: 10.1016/j.socscimed.2015.04.018. Epub 2015 Apr 30.

引用本文的文献

1
Social and Behavioral Determinants of Health in the Era of Artificial Intelligence with Electronic Health Records: A Scoping Review.
Health Data Sci. 2021 Aug 24;2021:9759016. doi: 10.34133/2021/9759016. eCollection 2021.
3
Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies.
J Med Internet Res. 2022 Dec 7;24(12):e40589. doi: 10.2196/40589.
4
Modeling obesity in complex food systems: Systematic review.
Front Endocrinol (Lausanne). 2022 Oct 13;13:1027147. doi: 10.3389/fendo.2022.1027147. eCollection 2022.
5
Predicting Obesity in Adults Using Machine Learning Techniques: An Analysis of Indonesian Basic Health Research 2018.
Front Nutr. 2021 Jun 21;8:669155. doi: 10.3389/fnut.2021.669155. eCollection 2021.
7
Identifying Key Determinants of Childhood Obesity: A Narrative Review of Machine Learning Studies.
Child Obes. 2021 Apr;17(3):153-159. doi: 10.1089/chi.2020.0324. Epub 2021 Mar 4.
10
Machine Learning Models to Predict Childhood and Adolescent Obesity: A Review.
Nutrients. 2020 Aug 16;12(8):2466. doi: 10.3390/nu12082466.

本文引用的文献

1
Combined measure of neighborhood food and physical activity environments and weight-related outcomes: The CARDIA study.
Health Place. 2015 May;33:9-18. doi: 10.1016/j.healthplace.2015.01.004. Epub 2015 Feb 25.
2
Community socioeconomic deprivation and obesity trajectories in children using electronic health records.
Obesity (Silver Spring). 2015 Jan;23(1):207-12. doi: 10.1002/oby.20903. Epub 2014 Oct 16.
3
Multicontextual correlates of adolescent leisure-time physical activity.
Am J Prev Med. 2014 Jun;46(6):605-16. doi: 10.1016/j.amepre.2014.01.009.
4
Geographic disparities in US mortality: "hot-spotting" large databases.
Epidemiology. 2014 May;25(3):468-70. doi: 10.1097/EDE.0000000000000085.
5
Attention deficit disorder, stimulant use, and childhood body mass index trajectory.
Pediatrics. 2014 Apr;133(4):668-76. doi: 10.1542/peds.2013-3427. Epub 2014 Mar 17.
6
The contextual influence of coal abandoned mine lands in communities and type 2 diabetes in Pennsylvania.
Health Place. 2013 Jul;22:115-22. doi: 10.1016/j.healthplace.2013.03.012. Epub 2013 Apr 25.
8
Fast food and obesity: a spatial analysis in a large United Kingdom population of children aged 13-15.
Am J Prev Med. 2012 May;42(5):e77-85. doi: 10.1016/j.amepre.2012.02.007.
9
Patterns of obesogenic neighborhood features and adolescent weight: a comparison of statistical approaches.
Am J Prev Med. 2012 May;42(5):e65-75. doi: 10.1016/j.amepre.2012.02.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验