Suppr超能文献

基于美国社区调查的社区信息在大型综合医疗保健组织中的应用。

The Application of Community-Based Information from the American Community Survey in a Large Integrated Health Care Organization.

机构信息

Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA.

Department of Clinical Analysis, Kaiser Permanente Southern California, Pasadena, CA.

出版信息

Perm J. 2020 Dec;25:1-3. doi: 10.7812/TPP/20.010.

Abstract

BACKGROUND

The American Community Survey (ACS) is the largest household survey conducted by the US Census Bureau. We sought to describe the community-level characteristics derived from the ACS among enrollees of Kaiser Permanente Southern California (KPSC), evaluate the associations between ACS estimates and selective individual-level health outcomes, and explore how using different scales of the census geography and the linearity assumption affect the associations.

METHODS

We examined the associations between track-level and block group-level ACS 5-year estimates and 4 individual-level Healthcare Effectiveness Data and Information Set (HEDIS) outcome measures (comprehensive diabetes care, postpartum care, antidepressant medication management, and childhood immunization status) using multilevel generalized linear models. Odds ratios and their 95% confidence intervals were estimated for every 10% increase in ACS measures.

RESULTS

6,357,841 addresses were successfully geocoded to at least the tract level. The community-level demographic, socioeconomic, residential, and other ACS measures varied among KPSC health plan enrollees. A majority of these ACS measures were associated with the selected HEDIS health outcomes. The directions of the effects were consistent across health outcomes; however, the magnitudes of the effect sizes varied. Within each HEDIS health outcome, the relative size of the effects appeared to remain similar. Differences between the census tract- and block group-level estimates were minor, especially for measures related to race/ethnicity, education, income, and occupation.

CONCLUSION

These findings support the use of many ACS measures at neighborhood levels to predict health outcomes. The geographic units might have little effect on the results. The linearity assumption should be made with caution.

摘要

背景

美国社区调查(ACS)是美国人口普查局进行的最大规模的家庭调查。我们旨在描述 Kaiser Permanente Southern California(KPSC)参保者的社区水平特征,评估 ACS 估计值与选择性个体健康结果之间的关联,并探讨使用不同的人口普查地理范围和线性假设尺度如何影响这些关联。

方法

我们使用多层次广义线性模型,检验了轨道级别和街区组级 ACS 5 年估计值与 4 个个体级别医疗保健效果数据和信息集(HEDIS)结果衡量指标(综合糖尿病护理、产后护理、抗抑郁药物管理和儿童免疫接种状况)之间的关联。对于 ACS 测量值每增加 10%,估计了比值比及其 95%置信区间。

结果

成功地理编码了 6,357,841 个地址,至少到街区组级别。KPSC 健康计划参保者的社区级人口统计学、社会经济、居住和其他 ACS 测量值存在差异。这些 ACS 测量值中的大多数与选定的 HEDIS 健康结果相关。影响的方向在各种健康结果中是一致的;然而,影响大小的幅度有所不同。在每个 HEDIS 健康结果中,效应的相对大小似乎保持相似。在人口普查区和街区组级别估计之间,差异较小,特别是与种族/族裔、教育、收入和职业相关的措施。

结论

这些发现支持在邻里水平上使用许多 ACS 措施来预测健康结果。地理单位对结果的影响可能很小。应该谨慎地做出线性假设。

相似文献

8
Measuring integrated care.衡量整合式照护。
Dan Med Bull. 2011 Feb;58(2):B4245.

引用本文的文献

5
Risk Factors for Acute Asthma Exacerbations in Adults With Mild Asthma.轻度哮喘成人急性哮喘加重的危险因素
J Allergy Clin Immunol Pract. 2024 Oct;12(10):2705-2716.e6. doi: 10.1016/j.jaip.2024.05.034. Epub 2024 May 29.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验