Vu Hiep L X, Ma Fangrui, Laegreid William W, Pattnaik Asit K, Steffen David, Doster Alan R, Osorio Fernando A
Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
J Virol. 2015 Dec;89(23):12070-83. doi: 10.1128/JVI.01657-15. Epub 2015 Sep 23.
Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. By using a set of 59 nonredundant, full-genome sequences of type 2 PRRSVs, a consensus genome (designated PRRSV-CON) was generated by aligning these 59 PRRSV full-genome sequences, followed by selecting the most common nucleotide found at each position of the alignment. Next, the synthetic PRRSV-CON strain was generated through the use of reverse genetics. PRRSV-CON replicates as efficiently as our prototype PRRSV strain FL12, both in vitro and in vivo. Importantly, when inoculated into pigs, PRRSV-CON confers significantly broader levels of heterologous protection than does wild-type PRRSV. Collectively, our data demonstrate that PRRSV-CON can serve as an excellent candidate for the development of a broadly protective PRRSV vaccine.
The extraordinary genetic variation of RNA viruses poses a monumental challenge for the development of broadly protective vaccines against these viruses. To minimize the genetic dissimilarity between vaccine immunogens and contemporary circulating viruses, computational strategies have been developed for the generation of artificial immunogen sequences (so-called "centralized" sequences) that have equal genetic distances to the circulating viruses. Thus far, the generation of centralized vaccine immunogens has been carried out at the level of individual viral proteins. We expand this concept to PRRSV, a highly variable RNA virus, by creating a synthetic PRRSV strain based on a centralized PRRSV genome sequence. This study provides the first example of centralizing the whole genome of an RNA virus to improve vaccine coverage. This concept may be significant for the development of vaccines against genetically variable viruses that require active viral replication in order to achieve complete immune protection.
目前的疫苗对在野外传播的不同猪繁殖与呼吸综合征病毒(PRRSV)毒株提供的保护水平不足,主要原因是病毒基因组的大量变异。我们在此描述一种新方法,用于生成一种PRRSV疫苗候选物,该候选物可针对不同的PRRSV分离株提供前所未有的异源保护水平。通过使用一组59个2型PRRSV的非冗余全基因组序列,通过比对这59个PRRSV全基因组序列,然后选择在比对的每个位置发现的最常见核苷酸,生成了一个共有基因组(命名为PRRSV-CON)。接下来,通过反向遗传学产生了合成PRRSV-CON毒株。PRRSV-CON在体外和体内的复制效率与我们的原型PRRSV毒株FL12一样高。重要的是,当接种到猪体内时,PRRSV-CON比野生型PRRSV提供显著更广泛的异源保护水平。总体而言,我们的数据表明PRRSV-CON可作为开发具有广泛保护作用的PRRSV疫苗的优秀候选物。
RNA病毒的非凡遗传变异对开发针对这些病毒的广泛保护性疫苗构成了巨大挑战。为了最小化疫苗免疫原与当代传播病毒之间的遗传差异,已开发出计算策略来生成与传播病毒具有相等遗传距离的人工免疫原序列(所谓的“集中化”序列)。到目前为止,集中化疫苗免疫原的产生是在单个病毒蛋白水平上进行的。我们通过基于集中化的PRRSV基因组序列创建合成PRRSV毒株,将这一概念扩展到PRRSV,一种高度可变的RNA病毒。本研究提供了首个集中RNA病毒全基因组以提高疫苗覆盖率的例子。这一概念对于开发针对需要活跃病毒复制以实现完全免疫保护的遗传可变病毒的疫苗可能具有重要意义。