Schäler Kerstin, Roos Matthias, Micke Peter, Golitsyn Yury, Seidlitz Anne, Thurn-Albrecht Thomas, Schneider Horst, Hempel Günter, Saalwächter Kay
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany.
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany.
Solid State Nucl Magn Reson. 2015 Nov;72:50-63. doi: 10.1016/j.ssnmr.2015.09.001. Epub 2015 Sep 3.
We review basic principles of low-resolution proton NMR spin diffusion experiments, relying on mobility differences in nm-sized phases of inhomogeneous organic materials such as block-co- or semicrystalline polymers. They are of use for estimates of domain sizes and insights into nanometric dynamic inhomogeneities. Experimental procedures and limitations of mobility-based signal decomposition/filtering prior to spin diffusion are addressed on the example of as yet unpublished data on semicrystalline poly(ϵ-caprolactone), PCL. Specifically, we discuss technical aspects of the quantitative, dead-time free detection of rigid-domain signals by aid of the magic-sandwich echo (MSE), and magic-and-polarization-echo (MAPE) and double-quantum (DQ) magnetization filters to select rigid and mobile components, respectively. Such filters are of general use in reliable fitting approaches for phase composition determinations. Spin diffusion studies at low field using benchtop instruments are challenged by rather short (1)H T1 relaxation times, which calls for simulation-based analyses. Applying these, in combination with domain sizes as determined by small-angle X-ray scattering, we have determined spin diffusion coefficients D for PCL (0.34, 0.19 and 0.032nm(2)/ms for crystalline, interphase and amorphous parts, respectively). We further address thermal-history effects related to secondary crystallization. Finally, the state of knowledge concerning the connection between D values determined locally at the atomic level, using (13)C detection and CP- or REDOR-based "(1)H hole burning" procedures, and those obtained by calibration experiments, is summarized. Specifically, the non-trivial dependence of D on the magic-angle spinning (MAS) frequency, with a minimum under static and a local maximum under moderate-MAS conditions, is highlighted.
我们回顾了低分辨率质子核磁共振自旋扩散实验的基本原理,该实验依赖于非均相有机材料(如嵌段共聚物或半结晶聚合物)纳米级相中分子运动性的差异。这些原理可用于估计畴尺寸,并深入了解纳米级动态不均匀性。以尚未发表的半结晶聚(ε-己内酯)(PCL)数据为例,讨论了自旋扩散之前基于分子运动性的信号分解/滤波的实验步骤和局限性。具体而言,我们讨论了借助魔三明治回波(MSE)定量、无死时间检测刚性畴信号的技术方面,以及分别用于选择刚性和可移动成分的魔极化回波(MAPE)和双量子(DQ)磁化滤波器。此类滤波器在确定相组成的可靠拟合方法中具有普遍用途。使用台式仪器在低场进行的自旋扩散研究受到相当短的(1)H T1弛豫时间的挑战,这需要基于模拟的分析。将这些分析与小角X射线散射确定的畴尺寸相结合,我们确定了PCL的自旋扩散系数D(结晶、中间相和无定形部分分别为0.34、0.19和0.032nm²/ms)。我们还进一步讨论了与二次结晶相关的热历史效应。最后,总结了关于使用(13)C检测和基于CP或REDOR的“(1)H空穴燃烧”程序在原子水平上局部确定的D值与通过校准实验获得的D值之间联系的知识状态。具体而言,突出了D对魔角旋转(MAS)频率的非平凡依赖性,即在静态条件下最小,在中等MAS条件下局部最大。