Suppr超能文献

系统调整和共价有机聚合物的多功能化以增强碳捕获。

Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture.

机构信息

State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology , Beijing 100029, P.R. China.

Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1462, United States.

出版信息

J Am Chem Soc. 2015 Oct 21;137(41):13301-7. doi: 10.1021/jacs.5b06266. Epub 2015 Oct 7.

Abstract

Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. Here, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer-Emmett-Teller (BET) specific surface areas of 430-3624 m(2) g(-1), and a broad range of pore volumes of 0.24-3.50 cm(3) g(-1), all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal-organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide over nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance of existing covalent organic polymers by multifunctionalization.

摘要

多孔共价聚合物由于其丰富的合成聚合物化学、大的内表面面积和超高的水热稳定性,在气体吸附、气体分离和催化领域引起了越来越多的关注。虽然精确地控制多孔有机材料的孔隙率以满足特定的应用仍然具有挑战性,但我们展示了如何通过将多种功能纳入单个框架,在共价有机聚合物中实现很大程度的多样性,就像在结晶多孔材料中那样。在这里,我们合成了 17 种新型多孔共价有机聚合物(COPs),它们具有精细调节的孔隙率、范围广泛的 Brunauer-Emmett-Teller(BET)比表面积为 430-3624 m(2) g(-1),以及范围广泛的孔体积为 0.24-3.50 cm(3) g(-1),所有这些都是通过调整构建块的长度和几何形状来实现的。此外,我们是第一个成功地将多个不同的官能团成功地整合到一个相中来制备多孔有机材料,这在以前的结晶金属-有机骨架(MOFs)中已经得到了证明。在一个相中具有多个官能团的 COPs 可以导致增强的性质,这些性质不是纯组分性质的简单线性组合。例如,在二溴苯骨架中,双官能化和多功能化的 COPs 对二氧化碳的选择性是任何单官能化 COPs 的两倍。这些多功能化的骨架在典型的烟道气条件下用于捕获二氧化碳的寄生能量成本也低于任何单官能化的骨架。尽管有了显著的改进,但这些骨架的性能仍不如目前用于捕获二氧化碳的最先进技术。尽管如此,这里提出的调谐策略为新型催化剂的设计、这些材料的功能性传感器的合成以及通过多功能化提高现有共价有机聚合物的性能开辟了途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验