Suppr超能文献

利用磁共振成像预测股骨强度:相对于骨密度测定的附加价值。

Using Magnetic Resonance for Predicting Femoral Strength: Added Value with respect to Bone Densitometry.

作者信息

Louis Olivia, Fierens Yves, Strantza Maria, Luypaert Robert, de Mey Johan, Cattrysse Erik

机构信息

Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.

Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel, Pleinlaan 2, 1040 Brussels, Belgium.

出版信息

Biomed Res Int. 2015;2015:801518. doi: 10.1155/2015/801518. Epub 2015 Aug 27.

Abstract

BACKGROUND AND PURPOSE

To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength.

MATERIAL AND METHODS

Bone mineral density (BMD) of eighteen femur specimens was assessed with pQCT, DXA, and MRI (using ultrashort echo times (UTE) and the MicroView software). Subsequently biomechanical testing was performed to assess failure load. Simple and multiple linear regression were used with failure load as the dependent variable.

RESULTS

Simple linear regression allowed a prediction of failure load with either pQCT, DXA, or MRI in an r(2) range of 0.41-0.48. Multiple linear regression with pQCT, DXA, and MRI yielded the best prediction (r(2) = 0.68).

CONCLUSIONS

The accuracy of MRI, using UTE and MicroView software, to predict femoral strength compares well with that of pQCT or DXA. Furthermore, the inclusion of MRI in a multiple-regression model yields the best prediction.

摘要

背景与目的

评估磁共振成像(MRI)相对于外周定量计算机断层扫描(pQCT)和双能X线吸收法(DXA)在预测股骨强度方面的附加价值。

材料与方法

使用pQCT、DXA和MRI(采用超短回波时间(UTE)及MicroView软件)评估18个股骨标本的骨密度(BMD)。随后进行生物力学测试以评估破坏载荷。以破坏载荷为因变量,采用简单线性回归和多元线性回归。

结果

简单线性回归显示,使用pQCT、DXA或MRI均可预测破坏载荷,决定系数(r²)范围为0.41 - 0.48。pQCT、DXA和MRI的多元线性回归得出最佳预测结果(r² = 0.68)。

结论

使用UTE和MicroView软件的MRI预测股骨强度的准确性与pQCT或DXA相当。此外,将MRI纳入多元回归模型可得出最佳预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d11/4564639/372ed7642e77/BMRI2015-801518.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验