Herrada Isaline, Samson Camille, Velours Christophe, Renault Louis, Östlund Cecilia, Chervy Pierre, Puchkov Dmytro, Worman Howard J, Buendia Brigitte, Zinn-Justin Sophie
Laboratoire de Biologie Structurale et Radiobiologie, Institute for Integrative Biology of the Cell (I2BC) , CEA Saclay Bât. 144, 91191 Gif-sur-Yvette Cedex, France.
Laboratoire d'Enzymologie et Biochimie Structurales, Institute for Integrative Biology of the Cell (I2BC) , CNRS Bât.34, 1 avenue de la terrasse, 91190 Gif-sur-Yvette, France.
ACS Chem Biol. 2015 Dec 18;10(12):2733-42. doi: 10.1021/acschembio.5b00648. Epub 2015 Oct 5.
More than 100 genetic mutations causing X-linked Emery-Dreifuss muscular dystrophy have been identified in the gene encoding the integral inner nuclear membrane protein emerin. Most mutations are nonsense or frameshift mutations that lead to the absence of emerin in cells. Only very few cases are due to missense or short in-frame deletions. Molecular mechanisms explaining the corresponding emerin variants' loss of function are particularly difficult to identify because of the mostly intrinsically disordered state of the emerin nucleoplasmic region. We now demonstrate that this EmN region can be produced as a disordered monomer, as revealed by nuclear magnetic resonance, but rapidly self-assembles in vitro. Increases in concentration and temperature favor the formation of long curvilinear filaments with diameters of approximately 10 nm, as observed by electron microscopy. Assembly of these filaments can be followed by fluorescence through Thioflavin-T binding and by Fourier-transform Infrared spectrometry through formation of β-structures. Analysis of the assembly properties of five EmN variants reveals that del95-99 and Q133H impact filament assembly capacities. In cells, these variants are located at the nuclear envelope, but the corresponding quantities of emerin-emerin and emerin-lamin proximities are decreased compared to wild-type protein. Furthermore, variant P183H favors EmN aggregation in vitro, and variant P183T provokes emerin accumulation in cytoplasmic foci in cells. Substitution of residue Pro183 might systematically favor oligomerization, leading to emerin aggregation and mislocalization in cells. Our results suggest that emerin self-assembly is necessary for its proper function and that a loss of either the protein itself or its ability to self-assemble causes muscular dystrophy.
在编码核内膜整合蛋白emerin的基因中,已鉴定出100多种导致X连锁型埃默里 - 德赖富斯肌营养不良症的基因突变。大多数突变是无义或移码突变,导致细胞中emerin缺失。只有极少数情况是由于错义或短的框内缺失。由于emerin核质区域大多处于内在无序状态,解释相应emerin变体功能丧失的分子机制特别难以确定。我们现在证明,如核磁共振所示,这个EmN区域可以作为无序单体产生,但在体外会迅速自我组装。浓度和温度的升高有利于形成直径约为10nm的长曲线形细丝,这通过电子显微镜观察到。这些细丝的组装可以通过硫黄素 - T结合的荧光以及通过β结构形成的傅里叶变换红外光谱法进行跟踪。对五个EmN变体的组装特性分析表明,del95 - 99和Q133H影响细丝组装能力。在细胞中,这些变体位于核膜,但与野生型蛋白相比,emerin - emerin和emerin - 核纤层蛋白的接近量减少。此外,变体P183H在体外有利于EmN聚集,而变体P183T在细胞中引发emerin在细胞质灶中的积累。残基Pro183的取代可能系统性地有利于寡聚化,导致emerin在细胞中聚集和定位错误。我们的结果表明,emerin自我组装对其正常功能是必要的,蛋白质本身或其自我组装能力的丧失都会导致肌营养不良症。