Suppr超能文献

使用离子淌度-质谱法鉴定糖差向异构体。

Identification of carbohydrate anomers using ion mobility-mass spectrometry.

机构信息

Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.

Institute for Chemistry and Biochemistry, Free University Berlin, Takustraße 3, 14195 Berlin, Germany.

出版信息

Nature. 2015 Oct 8;526(7572):241-4. doi: 10.1038/nature15388. Epub 2015 Sep 30.

Abstract

Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

摘要

碳水化合物是普遍存在的生物聚合物,在广泛的生物过程中都很重要。然而,由于其支链结构和每个单体之间糖苷键处的手性中心的存在,碳水化合物比肽和寡核苷酸更难表征。例如核磁共振波谱学等方法可用于表征糖苷键,但该技术需要毫克级的材料,并且无法检测到少量共存的非对映异构体。另一方面,质谱法即使对于少量的样品也可以提供有关碳水化合物组成和连接性的信息,但它不能用于区分立体异构体。在这里,我们证明了离子淌度-质谱法(一种根据分子的质量、电荷、大小和形状分离分子的方法)可以明确识别碳水化合物键异构体和立体异构体。我们分析了六种在组成、连接或构型上不同的合成碳水化合物异构体。我们的数据表明,可以识别共存的碳水化合物异构体,并且可以检测到低至 0.1%的微量异构体的相对浓度。此外,分析速度快,无需衍生化,只需少量样品。这些结果表明,离子淌度-质谱法是分析复杂碳水化合物的有效工具。这种方法可能会对碳水化合物合成领域产生类似于 20 世纪 70 年代后期高效液相色谱对肽组装领域的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验