Martín-Durán José M, Vellutini Bruno C, Hejnol Andreas
Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.
Evodevo. 2015 Sep 28;6:28. doi: 10.1186/s13227-015-0023-5. eCollection 2015.
The life cycle of many animals includes a larval stage, which has diversified into an astonishing variety of ecological strategies. The Nemertea is a group of spiralians that exhibits a broad diversity of larval forms, including the iconic pilidium. A pelagic planktotrophic pilidium is the ancestral form in the Pilidiophora, but several lineages exhibit deviations of this condition, mostly as a transition to pelagic lecithotrophy. The most extreme case occurs, however, in the Pilidiophoran Lineus ruber, which exhibits an adelphophagic intracapsular pilidium, the so-called Schmidt's larva.
We combined confocal laser scanning microscopy and gene expression studies to characterize the development and metamorphosis of the Schmidt's larva of L. ruber. The larva forms after gastrulation, and comprises a thin epidermis, a proboscis rudiment and two pairs of imaginal discs from which the juvenile will develop. The cells internalized during gastrulation form a blind gut and the blastopore gives rise to the mouth of the larva and juvenile. The Schmidt's larva eats other siblings that occupy the same egg capsule, accumulating nutrients for the juvenile. A gradual metamorphosis involves the differentiation of the juvenile cell types from the imaginal discs and the shedding of the larval epidermis. The expression of evolutionarily conserved anterior (foxQ2, six3/6, gsc, otx), endomesodermal (foxA, GATA456-a, twi-a) and posterior (evx, cdx) markers demonstrate that the juvenile retains the molecular patterning of the Schmidt's larva. After metamorphosis, the juveniles stay over 20 days within the egg masses, until they are fully mature and hatch.
The evolution of the intracapsular Schmidt's larva involved the loss of the typical feeding structures of the planktotrophic pilidium and a precocious formation of the imaginal discs, as also observed in other pelagic lecithotrophic forms. However, no special adaptations are observed related to adelphophagy. As in planktotrophic pilidium, the molecular mechanism patterning the juvenile is only active in the imaginal discs and not during the early development of the larva, suggesting two separate molecular programs during nemertean embryogenesis. Our results illuminate the diversification of larval forms in the Pilidiophora and Nemertea, and thus on the developmental mechanisms underlying metazoan larval evolution.
许多动物的生命周期包括幼虫阶段,其已分化为令人惊讶的各种生态策略。纽形动物是一类螺旋卵裂动物,表现出多种多样的幼虫形态,包括标志性的帽状幼虫。浮游性的摄食浮游生物的帽状幼虫是帽状幼虫亚目的原始形态,但几个谱系表现出这种状态的偏差,主要是向浮游性卵黄营养的转变。然而,最极端的情况发生在帽状幼虫亚目的红纽虫(Lineus ruber)中,它表现出一种自相残食的囊内帽状幼虫,即所谓的施密特幼虫。
我们结合共聚焦激光扫描显微镜和基因表达研究来描述红纽虫施密特幼虫的发育和变态过程。幼虫在原肠胚形成后形成,包括一层薄表皮、一个吻原基和两对成虫盘,幼虫将从这里发育而来。原肠胚形成过程中内化的细胞形成一个盲肠,胚孔形成幼虫和幼体的口。施密特幼虫会吃掉占据同一卵囊的其他兄弟姐妹,为幼体积累营养。逐渐变态包括成虫盘分化出幼体细胞类型以及幼虫表皮脱落。进化上保守的前部(foxQ2、six3/6、gsc、otx)、内中胚层(foxA、GATA456-a、twi-a)和后部(evx、cdx)标记物的表达表明,幼体保留了施密特幼虫的分子模式。变态后,幼体在卵团中停留超过20天,直到完全成熟并孵化。
囊内施密特幼虫的进化涉及到摄食浮游生物的帽状幼虫典型摄食结构的丧失以及成虫盘的早熟形成,这在其他浮游性卵黄营养形态中也有观察到。然而,未观察到与自相残食相关的特殊适应性变化。与摄食浮游生物的帽状幼虫一样,构建幼体的分子机制仅在成虫盘中活跃,而在幼虫早期发育过程中不活跃,这表明纽形动物胚胎发生过程中有两个独立的分子程序。我们的结果阐明了帽状幼虫亚目和纽形动物幼虫形态的多样性,从而揭示了后生动物幼虫进化的发育机制。