Suppr超能文献

向固氮酶活性位点连续供应质子的途径:Grotthuss机制的增强密度泛函建模

The pathway for serial proton supply to the active site of nitrogenase: enhanced density functional modeling of the Grotthuss mechanism.

作者信息

Dance Ian

机构信息

School of Chemistry, UNSW Australia, Sydney 2052, Australia.

出版信息

Dalton Trans. 2015 Nov 7;44(41):18167-86. doi: 10.1039/c5dt03223g. Epub 2015 Sep 30.

Abstract

Nitrogenase contains a well defined and conserved chain of water molecules leading to the FeMo cofactor (FeMo-co, an [Fe7MoCS9] cluster with bidentate chelation of Mo by homocitrate) that is the active site where N2 and other substrates are sequentially hydrogenated using multiple protons and electrons. The function of this chain is proposed to be a proton wire, serially translocating protons to triply-bridging S3B of FeMo-co, where, concomitant with electron transfer to FeMo-co, an H atom is generated on S3B. Density functional simulations of this proton translocation mechanism are reported here, using a large 269-atom model that includes all residues hydrogen bonded to and surrounding the water chain, and likely to influence proton transfer: three carboxylate O atoms of obligatory homocitrate are essential. The mechanism involves the standard two components of the Grotthuss mechanism, namely H atom slides that shift H3O(+) from one water site to the next, and HOH molecular rotations that convert backward (posterior) OH bonds in the water chain to forward (anterior) OH bonds. The topography of the potential energy surface for each of these steps has been mapped. H atom slides pass through very short (ca. 2.5 Å) O-H-O hydrogen bonds, while HOH rotations involve the breaking of O-HO hydrogen bonds, and the occurrence of long (up to 3.6 Å) separations between contiguous water molecules. Both steps involve low potential energy barriers, <7 kcal mol(-1). During operation of the Grotthuss mechanism in nitrogenase there are substantial displacements of water molecules along the chain, occurring as ripples. These characteristics of the 'Grotthuss two-step', coupled with a buffering ability of two carboxylate O atoms of homocitrate, and combined with density functional characterisation of the final proton slide from the ultimate water molecule to S3B (including electron addition), have been choreographed into a complete mechanism for serial hydrogenation of FeMo-co. The largest potential barrier is estimated to be 14 kcal mol(-1). These results are discussed in the context of reactivity data for nitrogenase, and the occurrence of a comparable water chain in cytochrome-c oxidase. Further investigation of the low-frequency conformational dynamics of the nitrogenase proteins, coupling proton transfer with other events in the nitrogenase cycle, is briefly canvassed.

摘要

固氮酶含有一条明确且保守的水分子链,通向铁钼辅因子(FeMo-co,一种[Fe7MoCS9]簇,其中钼通过高柠檬酸进行双齿螯合),该辅因子是活性位点,在这里,N2和其他底物利用多个质子和电子依次进行氢化反应。这条链的功能被认为是一条质子线,将质子依次转移到FeMo-co的三桥联S3B上,在那里,伴随着电子转移到FeMo-co,一个氢原子在S3B上生成。本文报道了这种质子转移机制的密度泛函模拟,使用了一个包含与水链氢键相连并围绕水链的所有残基的269个原子的大模型,这些残基可能会影响质子转移:必需的高柠檬酸的三个羧酸根氧原子至关重要。该机制涉及Grotthuss机制的两个标准组成部分,即氢原子滑动,它将H3O(+)从一个水位点转移到下一个水位点,以及水分子旋转,它将水链中向后(后部)的OH键转化为向前(前部)的OH键。已经绘制了这些步骤中每一步的势能面地形图。氢原子滑动通过非常短(约2.5 Å)的O-H-O氢键,而水分子旋转涉及O-HO氢键的断裂,以及相邻水分子之间出现长(高达3.6 Å)的间隔。这两个步骤都涉及低势能垒,<7 kcal mol(-1)。在固氮酶中Grotthuss机制运行期间,水分子沿着链有明显的位移,以波动形式出现。“Grotthuss两步”的这些特征,加上高柠檬酸的两个羧酸根氧原子的缓冲能力,并结合从最终水分子到S3B的最终质子滑动的密度泛函表征(包括电子添加),已被编排成FeMo-co连续氢化的完整机制。估计最大势能垒为14 kcal mol(-1)。在固氮酶的反应性数据以及细胞色素c氧化酶中类似水链的存在背景下讨论了这些结果。简要探讨了对固氮酶蛋白质低频构象动力学的进一步研究,将质子转移与固氮酶循环中的其他事件耦合起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验