Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
FEBS Lett. 2023 Jan;597(1):45-58. doi: 10.1002/1873-3468.14534. Epub 2022 Nov 28.
Nitrogenase is the sole enzyme responsible for the ATP-dependent conversion of atmospheric dinitrogen into the bioavailable form of ammonia (NH ), making this protein essential for the maintenance of the nitrogen cycle and thus life itself. Despite the widespread use of the Haber-Bosch process to industrially produce NH , biological nitrogen fixation still accounts for half of the bioavailable nitrogen on Earth. An important feature of nitrogenase is that it operates under physiological conditions, where the equilibrium strongly favours ammonia production. This biological, multielectron reduction is a complex catalytic reaction that has perplexed scientists for decades. In this review, we explore the current understanding of the molybdenum nitrogenase system based on experimental and computational research, as well as the limitations of the crystallographic, spectroscopic, and computational techniques employed. Finally, essential outstanding questions regarding the nitrogenase system will be highlighted alongside suggestions for future experimental and computational work to elucidate this essential yet elusive process.
固氮酶是唯一能够将大气中的氮气在 ATP 依赖的条件下转化为生物可利用的氨(NH3)的酶,这使得该蛋白对于氮循环的维持和生命本身都至关重要。尽管哈伯-博世(Haber-Bosch)工艺被广泛用于工业生产 NH3,但生物固氮仍然占据了地球上一半的生物可利用氮。固氮酶的一个重要特征是它在生理条件下工作,在这种条件下,平衡强烈有利于氨的生成。这种生物的多电子还原是一个复杂的催化反应,几十年来一直困扰着科学家们。在这篇综述中,我们根据实验和计算研究,探讨了钼固氮酶系统的最新认识,以及所采用的晶体学、光谱学和计算技术的局限性。最后,我们将突出固氮酶系统中尚未解决的关键问题,并提出未来的实验和计算工作建议,以阐明这一重要但难以捉摸的过程。