Suppr超能文献

预测价值工具在化学预防剂开发中的辅助作用

Predictive Value Tools as an Aid in Chemopreventive Agent Development.

作者信息

Dunn Barbara K, Steele Vernon E, Fagerstrom Richard M, Topp Carol F, Ransohoff David, Cunningham Christopher, Lubet Ron, Ford Leslie G, Kramer Barnett S

机构信息

Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland (BKD, VES, RMF, RL, LGF, BSK); CCS Associates, Inc., McLean, VA (CFT); Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (DR); Information Management Services, Rockville, MD (CC).

出版信息

J Natl Cancer Inst. 2015 Sep 28;107(12):djv259. doi: 10.1093/jnci/djv259. Print 2015 Dec.

Abstract

BACKGROUND

Over 25 years, the National Cancer Institute's Division of Cancer Prevention has entered some 800 agents into a chemopreventive agent testing program. Two critical steps involve: 1) in vitro/in vivo morphologic assays and 2) animal tumor assays (incidence/multiplicity reduction). We sought to determine how accurately the earlier-stage (morphologic) assays predict efficacy in the later-stage (animal tumor) assays.

METHODS

Focusing on 210 agents tested in both morphologic and animal tumor assays, we carried out statistical modeling of how well the six most commonly used morphologic assays predicted drug efficacy in animal tumor assays. Using multimodel inference, three statistical models were generated to evaluate the ability of these six morphologic assays to predict tumor outcomes in three different sets of animal tumor assays: 1) all tumor types, 2) mammary cancer only, and 3) colon cancer only. Using this statistical modeling approach, each morphologic assay was assigned a value reflecting how strongly it predicted outcomes in each of the three different sets of animal tumor assays.

RESULTS

We demonstrated differences in the predictive value of specific morphologic assays for positive animal tumor assay results. Some of the morphologic assays were strongly predictive of meaningful positive efficacy outcomes in animal tumor assays representing specific cancer types, particularly the aberrant crypt focus (ACF) assay for colon cancer. Moreover, less strongly predictive assays can be combined and sequenced, resulting in enhanced composite predictive ability.

CONCLUSIONS

Predictive models such as these could be used to guide selection of preventive agents as well as morphologic and animal tumor assays, thereby improving the efficiency of our approach to chemopreventive agent development.

摘要

背景

在过去25年中,美国国立癌症研究所癌症预防部已将约800种药物纳入化学预防剂测试项目。其中有两个关键步骤:1)体外/体内形态学检测;2)动物肿瘤检测(发病率/肿瘤数量减少)。我们试图确定早期(形态学)检测在预测后期(动物肿瘤)检测中的疗效时的准确程度。

方法

针对在形态学检测和动物肿瘤检测中都进行过测试的210种药物,我们对六种最常用的形态学检测在预测动物肿瘤检测中的药物疗效方面的表现进行了统计建模。使用多模型推断,生成了三个统计模型,以评估这六种形态学检测在三组不同的动物肿瘤检测中预测肿瘤结果的能力:1)所有肿瘤类型;2)仅乳腺癌;3)仅结肠癌。使用这种统计建模方法,为每种形态学检测赋予一个值,以反映其在三组不同的动物肿瘤检测中预测结果的强度。

结果

我们证明了特定形态学检测对动物肿瘤检测阳性结果的预测价值存在差异。某些形态学检测对代表特定癌症类型的动物肿瘤检测中的有意义的阳性疗效结果具有很强的预测性,特别是结肠癌的异常隐窝灶(ACF)检测。此外,预测性较弱的检测可以组合并排序,从而提高综合预测能力。

结论

这样的预测模型可用于指导预防剂的选择以及形态学和动物肿瘤检测,从而提高我们开发化学预防剂方法的效率。

相似文献

1
Predictive Value Tools as an Aid in Chemopreventive Agent Development.预测价值工具在化学预防剂开发中的辅助作用
J Natl Cancer Inst. 2015 Sep 28;107(12):djv259. doi: 10.1093/jnci/djv259. Print 2015 Dec.
3
How to Rationally Identify Promising Cancer Chemoprevention Agents?如何合理识别有前景的癌症化学预防剂?
J Natl Cancer Inst. 2015 Sep 29;107(12):djv288. doi: 10.1093/jnci/djv288. Print 2015 Dec.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验