Alcaine S D, Pacitto D, Sela D A, Nugen S R
Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA.
Analyst. 2015 Nov 21;140(22):7629-36. doi: 10.1039/c5an01181g.
Genetic engineering of bacteriophages allows for the development of rapid, highly specific, and easily manufactured probes for the detection of bacterial pathogens. A challenge for novel probes is the ease of their adoption in real world laboratories. We have engineered the bacteriophage T7, which targets Escherichia coli, to carry the alkaline phosphatase gene, phoA. This inclusion results in phoA overexpression following phage infection of E. coli. Alkaline phosphatase is commonly used in a wide range of diagnostics, and thus a signal produced by our phage-based probe could be detected using common laboratory equipment. Our work demonstrates the successful: (i) modification of T7 phage to carry phoA; (ii) overexpression of alkaline phosphatase in E. coli; and (iii) detection of this T7-induced alkaline phosphatase activity using commercially available colorimetric and chemilumiscent methods. Furthermore, we demonstrate the application of our phage-based probe to rapidly detect low levels of bacteria and discern the antibiotic resistance of E. coli isolates. Using our bioengineered phage-based probe we were able to detect 10(3) CFU per mL of E. coli in 6 hours using a chemiluminescent substrate and 10(4) CFU per mL within 7.5 hours using a colorimetric substrate. We also show the application of this phage-based probe for antibiotic resistance testing. We were able to determine whether an E. coli isolate was resistant to ampicillin within 4.5 hours using chemiluminescent substrate and within 6 hours using a colorimetric substrate. This phage-based scheme could be readily adopted in labs without significant capital investments and can be translated to other phage-bacteria pairs for further detection.
噬菌体的基因工程技术有助于开发用于检测细菌病原体的快速、高度特异性且易于制造的探针。新型探针面临的一个挑战是如何在实际实验室中方便地应用。我们对靶向大肠杆菌的噬菌体T7进行了基因工程改造,使其携带碱性磷酸酶基因phoA。这种改造使得噬菌体感染大肠杆菌后phoA基因过度表达。碱性磷酸酶广泛应用于多种诊断检测中,因此我们基于噬菌体的探针所产生的信号可以使用常规实验室设备进行检测。我们的工作成功证明了:(i)对T7噬菌体进行改造使其携带phoA基因;(ii)在大肠杆菌中碱性磷酸酶的过度表达;(iii)使用市售的比色法和化学发光法检测这种由T7噬菌体诱导的碱性磷酸酶活性。此外,我们展示了基于噬菌体的探针在快速检测低水平细菌以及辨别大肠杆菌分离株抗生素耐药性方面的应用。使用我们通过生物工程改造的基于噬菌体的探针,我们能够在6小时内使用化学发光底物检测到每毫升10³ 个大肠杆菌菌落形成单位(CFU),在7.5小时内使用比色底物检测到每毫升10⁴ 个CFU。我们还展示了这种基于噬菌体的探针在抗生素耐药性测试中的应用。我们能够在4.5小时内使用化学发光底物、在6小时内使用比色底物确定大肠杆菌分离株是否对氨苄青霉素耐药。这种基于噬菌体的方案无需大量资金投入即可在实验室中轻松采用,并且可以推广到其他噬菌体 - 细菌组合用于进一步检测。