Suppr超能文献

与玉米对轮枝镰孢菌防御反应相关的基因子网模块的计算识别

Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides.

作者信息

Kim Mansuck, Zhang Huan, Woloshuk Charles, Shim Won-Bo, Yoon Byung-Jun

出版信息

BMC Bioinformatics. 2015;16 Suppl 13(Suppl 13):S12. doi: 10.1186/1471-2105-16-S13-S12. Epub 2015 Sep 25.

Abstract

BACKGROUND

Maize, a crop of global significance, is vulnerable to a variety of biotic stresses resulting in economic losses. Fusarium verticillioides (teleomorph Gibberella moniliformis) is one of the key fungal pathogens of maize, causing ear rots and stalk rots. To better understand the genetic mechanisms involved in maize defense as well as F. verticillioides virulence, a systematic investigation of the host-pathogen interaction is needed. The aim of this study was to computationally identify potential maize subnetwork modules associated with its defense response against F. verticillioides.

RESULTS

We obtained time-course RNA-seq data from B73 maize inoculated with wild type F. verticillioides and a loss-of-virulence mutant, and subsequently established a computational pipeline for network-based comparative analysis. Specifically, we first analyzed the RNA-seq data by a cointegration-correlation-expression approach, where maize genes were jointly analyzed with known F. verticillioides virulence genes to find candidate maize genes likely associated with the defense mechanism. We predicted maize co-expression networks around the selected maize candidate genes based on partial correlation, and subsequently searched for subnetwork modules that were differentially activated when inoculated with two different fungal strains. Based on our analysis pipeline, we identified four potential maize defense subnetwork modules. Two were directly associated with maize defense response and were associated with significant GO terms such as GO:0009817 (defense response to fungus) and GO:0009620 (response to fungus). The other two predicted modules were indirectly involved in the defense response, where the most significant GO terms associated with these modules were GO:0046914 (transition metal ion binding) and GO:0046686 (response to cadmium ion).

CONCLUSION

Through our RNA-seq data analysis, we have shown that a network-based approach can enhance our understanding of the complicated host-pathogen interactions between maize and F. verticillioides by interpreting the transcriptome data in a system-oriented manner. We expect that the proposed analytic pipeline can also be adapted for investigating potential functional modules associated with host defense response in diverse plant-pathogen interactions.

摘要

背景

玉米是一种具有全球重要意义的作物,易受多种生物胁迫影响而导致经济损失。轮枝镰孢菌(学名:Fusarium verticillioides,异名:Gibberella moniliformis)是玉米的主要真菌病原体之一,可引发穗腐病和茎腐病。为了更好地理解玉米防御以及轮枝镰孢菌毒力所涉及的遗传机制,需要对宿主 - 病原体相互作用进行系统研究。本研究的目的是通过计算识别与玉米对轮枝镰孢菌防御反应相关的潜在子网络模块。

结果

我们从接种野生型轮枝镰孢菌和无毒突变体的B73玉米中获得了时间序列RNA测序数据,随后建立了基于网络的比较分析计算流程。具体而言,我们首先通过协整 - 相关性 - 表达方法分析RNA测序数据,将玉米基因与已知的轮枝镰孢菌毒力基因联合分析,以寻找可能与防御机制相关的候选玉米基因。我们基于偏相关性预测了所选玉米候选基因周围的玉米共表达网络,随后搜索接种两种不同真菌菌株时差异激活的子网络模块。基于我们的分析流程,我们识别出四个潜在的玉米防御子网络模块。其中两个直接与玉米防御反应相关,并与显著的基因本体(GO)术语相关,如GO:0009817(对真菌的防御反应)和GO:0009620(对真菌的反应)。另外两个预测模块间接参与防御反应,与这些模块相关的最显著GO术语是GO:0046914(过渡金属离子结合)和GO:0046686(对镉离子的反应)。

结论

通过我们的RNA测序数据分析,表明基于网络的方法可以通过以系统导向的方式解释转录组数据,增强我们对玉米与轮枝镰孢菌之间复杂宿主 - 病原体相互作用的理解。我们期望所提出的分析流程也可适用于研究不同植物 - 病原体相互作用中与宿主防御反应相关的潜在功能模块。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5acf/4597171/29c122283453/1471-2105-16-S13-S12-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验