Suppr超能文献

美国国立癌症研究所资助的研究人员发起的I期和II期抗癌药物开发的最新创新成果。

Recent innovations in the USA National Cancer Institute-sponsored investigator initiated Phase I and II anticancer drug development.

作者信息

Bando Hideaki, Takebe Naoko

机构信息

Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan

Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA

出版信息

Jpn J Clin Oncol. 2015 Nov;45(11):1001-6. doi: 10.1093/jjco/hyv144. Epub 2015 Sep 29.

Abstract

Exciting recent advancements in deep-sequencing technology have enabled a rapid and cost-effective molecular characterization of patient-derived tumor samples. Incorporating these innovative diagnostic technologies into early clinical trials could significantly propel implementation of precision medicine by identifying genetic markers predictive of sensitivity to agents. It may also markedly accelerate drug development and subsequent regulatory approval of novel agents. Particularly noteworthy, a high-response rate in a Phase II trial involving a biomarker-enriched patient cohort could result in a regulatory treatment approval in rare histologies, which otherwise would not be a candidate for a large randomized clinical trial. Furthermore, even if a trial does not meet its statistical endpoint, tumors from a few responders should be molecularly characterized as part of the new biomarker-mining processes. In order to accommodate patient screening and accelerate the accrual process, institutions conducting early clinical trials need to be a part of a multi-institution clinical trials network. Future clinical trial design will incorporate new biomarkers discovered by a 'phenotype-to-genotype' effort with an appropriate statistical design. To help advance such changes, the National Cancer Institute has recently reformed the existing early phase clinical trials network. A new clinical trial network, the Experimental Therapeutics Clinical Trials Network (ET-CTN), was begun and, in addition to its pre-existing infrastructure, an up-to-date clinical trial registration system, clinical trial monitoring system including electronic database and a central Institutional Review Board were formed. Ultimately, these reforms support identifying the most appropriate therapy for each tumor type by incorporating state-of-the-art molecular diagnostic tools into early clinical trials.

摘要

深度测序技术最近取得的令人兴奋的进展,使得能够对患者来源的肿瘤样本进行快速且经济高效的分子特征分析。将这些创新的诊断技术纳入早期临床试验,通过识别预测对药物敏感性的基因标志物,可显著推动精准医学的实施。这也可能显著加速新药的研发及后续的监管审批。特别值得注意的是,在一项涉及生物标志物富集患者队列的II期试验中,高缓解率可能会导致罕见组织学类型的监管治疗批准,否则这些类型不会成为大型随机临床试验的候选对象。此外,即使一项试验未达到其统计终点,少数缓解者的肿瘤也应作为新的生物标志物挖掘过程的一部分进行分子特征分析。为了适应患者筛选并加速入组过程,开展早期临床试验的机构需要成为多机构临床试验网络的一部分。未来的临床试验设计将把通过“表型到基因型”努力发现的新生物标志物与适当的统计设计相结合。为了推动此类变革,美国国立癌症研究所最近对现有的早期临床试验网络进行了改革。一个新的临床试验网络——实验治疗临床试验网络(ET - CTN)启动了,除了其原有的基础设施外,还形成了一个最新的临床试验注册系统、包括电子数据库的临床试验监测系统以及一个中央机构审查委员会。最终,这些改革通过将最先进的分子诊断工具纳入早期临床试验,支持为每种肿瘤类型确定最合适的治疗方法。

相似文献

4
Defining precision: The precision medicine initiative trials NCI-MPACT and NCI-MATCH.精准医学的定义:精准医学计划的NCI-MPACT和NCI-MATCH试验。
Curr Probl Cancer. 2017 May-Jun;41(3):182-193. doi: 10.1016/j.currproblcancer.2017.02.001. Epub 2017 Feb 11.
5
Perspectives on research activity in the USA on Cancer Precision Medicine.美国癌症精准医学研究活动的视角
Jpn J Clin Oncol. 2016 Feb;46(2):106-10. doi: 10.1093/jjco/hyv162. Epub 2015 Nov 2.
6
Innovation in oncology clinical trial design.肿瘤临床试验设计的创新。
Cancer Treat Rev. 2019 Mar;74:15-20. doi: 10.1016/j.ctrv.2019.01.001. Epub 2019 Jan 4.

本文引用的文献

2
Personalizing oncology: perspectives and prospects.个体化肿瘤学:观点与展望。
J Clin Oncol. 2013 May 20;31(15):1904-11. doi: 10.1200/JCO.2012.45.3605. Epub 2013 Apr 15.
3
Precision oncology: an overview.精准肿瘤学:概述
J Clin Oncol. 2013 May 20;31(15):1803-5. doi: 10.1200/JCO.2013.49.4799. Epub 2013 Apr 15.
5
Genome sequencing identifies a basis for everolimus sensitivity.基因组测序确定了依维莫司敏感性的基础。
Science. 2012 Oct 12;338(6104):221. doi: 10.1126/science.1226344. Epub 2012 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验