Fimmel Elena, Giannerini Simone, Gonzalez Diego Luis, Strüngmann Lutz
Institute for Mathematical Biology, Faculty of Computer Sciences, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
Department of Statistical Sciences, University of Bologna, 40126, Bologna, Italy.
J Theor Biol. 2015 Dec 7;386:159-65. doi: 10.1016/j.jtbi.2015.08.034. Epub 2015 Sep 28.
The presence of circular codes in mRNA coding sequences is postulated to be involved in informational mechanisms aimed at detecting and maintaining the normal reading frame during protein synthesis. Most of the recent research is focused on trinucleotide circular codes. However, also dinucleotide circular codes are important since dinucleotides are ubiquitous in genomes and associated to important biological functions. In this work we adopt the group theoretic approach used for trinucleotide codes in Fimmel et al. (2015) to study dinucleotide circular codes and highlight their symmetry properties. Moreover, we characterize such codes in terms of n-circularity and provide a graph representation that allows to visualize them geometrically. The results establish a theoretical framework for the study of the biological implications of dinucleotide circular codes in genomic sequences.
据推测,mRNA编码序列中环状密码的存在参与了旨在在蛋白质合成过程中检测和维持正常阅读框的信息机制。最近的大多数研究都集中在三核苷酸环状密码上。然而,二核苷酸环状密码也很重要,因为二核苷酸在基因组中无处不在且与重要的生物学功能相关。在这项工作中,我们采用了Fimmel等人(2015年)用于三核苷酸密码的群论方法来研究二核苷酸环状密码,并突出它们的对称性质。此外,我们根据n-环状性对这些密码进行了表征,并提供了一种图形表示法,以便从几何角度对它们进行可视化。这些结果为研究基因组序列中二核苷酸环状密码的生物学意义建立了一个理论框架。