Aymard Luc, Oumellal Yassine, Bonnet Jean-Pierre
Laboratoire de Réactivité et Chimie des Solides - LRCS, UMR CNRS-UPJV 7314, 33 rue Saint-Leu, 80039 Amiens, France.
Institut de Chimie et des Matériaux Paris-Est - ICMPE, UMR CNRS-UPEC 7182, 2-8 Rue Henri Dunant, 94320 Thiais, France.
Beilstein J Nanotechnol. 2015 Aug 31;6:1821-39. doi: 10.3762/bjnano.6.186. eCollection 2015.
The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (<0.2 V) for conversion materials. Conversion process reaction mechanisms with lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which share the knowledge of both hydrogen-storage and lithium-anode communities.
本综述介绍并讨论了金属氢化物(MH)与锂的转化反应的技术现状,涉及这些氢化物作为锂离子电池负极材料的应用。重点介绍了二元、三元和复合氢化物不同实例的重量和体积存储容量,并对热力学预测和实验结果进行了比较。MgH₂是最具吸引力的金属氢化物之一,在合适的电位(相对于Li⁺/Li⁰为0.5 V)下具有1480 mA·h·g⁻¹的可逆容量,且转化材料的电极极化最低(<0.2 V)。随后详细阐述了MgH₂、TiH₂、复合氢化物Mg₂MHₓ以及其他镁基氢化物与锂的转化过程反应机理。MgH₂的可逆转化反应机理受锂控制,可扩展到其他氢化物,如:MHₓ + xLi⁺ + xe⁻与M + xLiH处于平衡状态。最近报道了TiH₂以及Mg₂FeH₆、Mg₂CoH₅和Mg₂NiH₄涉及固溶体、亚稳态畸变相和低氢含量相的其他反应路径。讨论了克服技术难题的基本方面的重要性,重点关注MgH₂情况下的转化反应限制。介绍了MgH₂粒径、机械研磨、氢吸附循环、与碳研磨、在氢气氛下反应球磨以及向MgH₂/碳复合材料中添加金属和催化剂对动力学改善和可逆性的影响。实际应用需要大幅提高转化过程效率的技术改进。主要目标是最小化锂提取过程中电极体积变化的影响,并克服LiH较差的电子导电性。使用聚合物粘合剂来提高氢化物基电极的循环寿命以及合成纳米级复合氢化物有助于解决这些缺点。高容量氢化物负极的开发应受到新兴纳米研究前景的启发,这些前景共享储氢和锂负极领域的知识。