Papadopoulos Dimitrios K, Krmpot Aleksandar J, Nikolić Stanko N, Krautz Robert, Terenius Lars, Tomancak Pavel, Rigler Rudolf, Gehring Walter J, Vukojević Vladana
Max-Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
Department of Clinical Neuroscience (CNS), Center for Molecular Medicine (CMM), Karolinska Institutet, 17176 Stockholm, Sweden; Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia.
Mech Dev. 2015 Nov;138 Pt 2:218-225. doi: 10.1016/j.mod.2015.09.004. Epub 2015 Sep 30.
Hox genes encode transcription factors that control the formation of body structures, segment-specifically along the anterior-posterior axis of metazoans. Hox transcription factors bind nuclear DNA pervasively and regulate a plethora of target genes, deploying various molecular mechanisms that depend on the developmental and cellular context. To analyze quantitatively the dynamics of their DNA-binding behavior we have used confocal laser scanning microscopy (CLSM), single-point fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS) and bimolecular fluorescence complementation (BiFC). We show that the Hox transcription factor Sex combs reduced (Scr) forms dimers that strongly associate with its specific fork head binding site (fkh250) in live salivary gland cell nuclei. In contrast, dimers of a constitutively inactive, phospho-mimicking variant of Scr show weak, non-specific DNA-binding. Our studies reveal that nuclear dynamics of Scr is complex, exhibiting a changing landscape of interactions that is difficult to characterize by probing one point at a time. Therefore, we also provide mechanistic evidence using massively parallel FCS (mpFCS). We found that Scr dimers are predominantly formed on the DNA and are equally abundant at the chromosomes and an introduced multimeric fkh250 binding-site, indicating different mobilities, presumably reflecting transient binding with different affinities on the DNA. Our proof-of-principle results emphasize the advantages of mpFCS for quantitative characterization of fast dynamic processes in live cells.
Hox基因编码转录因子,这些转录因子控制后生动物沿前后轴特定节段的身体结构形成。Hox转录因子广泛结合核DNA并调控大量靶基因,运用依赖于发育和细胞环境的各种分子机制。为了定量分析它们DNA结合行为的动态变化,我们使用了共聚焦激光扫描显微镜(CLSM)、单点荧光相关光谱(FCS)、荧光交叉相关光谱(FCCS)和双分子荧光互补(BiFC)。我们发现,Hox转录因子性梳减少(Scr)形成二聚体,这些二聚体在活唾液腺细胞核中与其特定的叉头结合位点(fkh250)强烈结合。相比之下,Scr的一种组成型无活性、磷酸化模拟变体的二聚体表现出弱的、非特异性的DNA结合。我们的研究表明,Scr的核动态变化很复杂,呈现出不断变化的相互作用格局,很难通过一次探测一个点来表征。因此,我们还使用大规模平行FCS(mpFCS)提供了机制证据。我们发现,Scr二聚体主要在DNA上形成,在染色体和引入的多聚体fkh250结合位点上同样丰富,表明其具有不同的迁移率,大概反映了在DNA上以不同亲和力的瞬时结合。我们的原理验证结果强调了mpFCS在定量表征活细胞中快速动态过程方面的优势。